[1] ROMY R, ANGELICA C, MARCUS Z, et al. Drought-induced xylem embolism limits the recovery of leaf gas exchange in Scots pine[J]. Plant physiology, 2020, 184(2): 852-864. doi: 10.1104/pp.20.00407
[2] LI Q, ZHAO M, WANG N, et al. Water use strategies and drought intensity define the relative contributions of hydraulic failure and carbohydrate depletion during seedling mortality[J]. Plant Physiology and Biochemistry, 2020, 153: 106-118. doi: 10.1016/j.plaphy.2020.05.023
[3] HARTMANN H. Carbon starvation during drought-induced tree mortality–are we chasing a myth?[J]. Journal of Plant Hydraulics, 2015, 2: 1-5.
[4] ADAMS H D, ZEPPEL M J B, ANDEREGG W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality[J]. Nature ecology & evolution, 2017, 1(9): 1285-1291.
[5] MCDOWELL N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant physiology, 2011, 155(3): 1051-1059. doi: 10.1104/pp.110.170704
[6] 邓秀秀. 马尾松光合产物的分配特征及其受干旱和遮荫的影响[D]. 北京: 中国林业科学研究院, 2020.
[7] 王 林, 代永欣, 张劲松, 等. 水分和光照条件对核桃-黄豆农林复合系统中黄豆光合作用和生长的影响[J]. 林业科学, 2020, 56(4):188-196. doi: 10.11707/j.1001-7488.20200421
[8] AHMED U, RAO M J, QI C, et al. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in populus under drought stress[J]. Molecules, 2021, 26(18): 5546. doi: 10.3390/molecules26185546
[9] SZYMBORSKA S I. Developmental and chemical characteristics of Melittis melissophyllum L. in limited access of sunlight[J]. Herba Polonica, 2020, 66(1): 1-8. doi: 10.2478/hepo-2020-0003
[10] 贺小妮, 郑鹏坤, 胡喜巧, 等. 光照对红豆杉幼苗生长及黄酮、多糖含量的影响[J]. 现代园艺, 2018(7):19-20. doi: 10.14051/j.cnki.xdyy.2018.07.007
[11] 管仁伟, 郭瑞齐, 林慧彬, 等. 基于植物代谢组学技术的干旱及盐胁迫对黄芩中黄酮类成分影响的研究[J]. 中草药, 2022, 53(5):1504-1511.
[12] 陈汉鑫. 山西野生沙棘对吕梁山区海拔和坡位的生理生态响应[D]. 晋中: 山西农业大学, 2020.
[13] DAI Y X, WANG L, WAN X C. Relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought[J]. AoB Plants, 2018, 10(1): plx069.
[14] MITCHELL P J, O'GRADY A P, TISSUE D T, et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality[J]. The New phytologist, 2013, 197(3): 862-872. doi: 10.1111/nph.12064
[15] 任园宇, 魏东伟, 王中伟, 等. 亚硝酸钠-硝酸铝比色法测定干旱胁迫前后玉米幼苗的总黄酮含量[J]. 农学学报, 2020, 10(5):15-20. doi: 10.11923/j.issn.2095-4050.cjas20190800161
[16] 李海波, 薛 浩, 薛静茹, 等. 中国沙棘树冠上中下部枝条的水碳代谢与生长结实性状研究[J]. 林业科学研究, 2022, 35(5):188-195. doi: 10.13275/j.cnki.lykxyj.2022.005.021
[17] 吴 旭, 牛耀彬, 荀梦瑶, 等. 黄土丘陵区优势造林树种水分来源对季节性干旱的响应[J]. 生态学报, 2022, 42(10):4101-4112.
[18] 黄 铨, 于倬德. 沙棘研究[M]. 北京: 科学出版社, 2006.
[19] SCHOONMAKER A L, HACKE U G, LANDHÄUSSER S M, et al. Hydraulic acclimation to shading in boreal conifers of varying shade tolerance[J]. Plant, cell & environment, 2010, 33(3): 382-393.
[20] TOMASELLA M, CASOLO V, NATALE S, et al. Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra[J]. New phytologist, 2021, 231(1): 108-121. doi: 10.1111/nph.17384
[21] SCHOONMAKER A S, HILLABRAND R, LIEFFERS V J, et al. Seasonal dynamics of non-structural carbon pools and their relationship to growth in two boreal conifer tree species[J]. Tree Physiology, 2021, 41(9): 1563-1582. doi: 10.1093/treephys/tpab013
[22] JENSEN A M, ECKERT D, CARTER K R, et al. Springtime drought shifts carbon partitioning of recent photosynthates in 10-year old Picea mariana trees, causing restricted canopy development[J]. Frontiers in Forests and Global Change, 2021, 3: 601046. doi: 10.3389/ffgc.2020.601046
[23] ZHOU G, ZHOU X, NIE Y, et al. Drought‐induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials[J]. Plant Cell & Environment, 2018, 41(11): 2589-2599.
[24] PIPER F I, REYES-DIAZ M, CORCUERA L J, et al. Carbohydrate storage, survival, and growth of two evergreen Nothofagus species in two contrasting light environments[J]. Ecological Research, 2009, 24(6): 1233-1241. doi: 10.1007/s11284-009-0606-5
[25] PIPER F I, PAULA S. The role of nonstructural carbohydrates storage in forest resilience under climate change[J]. Current Forestry Reports, 2020, 6(1): 1-13. doi: 10.1007/s40725-019-00109-z
[26] OUYANG S, GESSLER A, SAURER M, et al. Root carbon and nutrient homeostasis determines downy oak sapling survival and recovery from drought[J]. Tree Physiology, 2021, 41(8): 1400-1412. doi: 10.1093/treephys/tpab019
[27] 李丹丹, 梁宗锁, 普布卓玛, 等. 干旱胁迫对紫花苜蓿黄酮类化合物含量及其合成途径关键酶活性的影响[J]. 西北植物学报, 2020, 40(8):1380-1388. doi: 10.7606/j.issn.1000-4025.2020.08.1380
[28] HAGAGGI N S A, ABDUL-RAOUF U M. Drought-tolerant Sphingobacterium changzhouense Alv associated with Aloe vera mediates drought tolerance in maize (Zea mays)[J]. World journal of microbiology & biotechnology, 2022, 38(12): 248.
[29] YAO H, WANG F, BI Q, et al. Combined analysis of pharmaceutical active ingredients and transcriptomes of Glycyrrhiza uralensis under peg6000-induced drought stress revealed glycyrrhizic acid and flavonoids accumulation via ja-mediated signaling[J]. Frontiers in Plant Science, 2022, 13: 920172. doi: 10.3389/fpls.2022.920172
[30] ZHANG G H, YU Z M, YAO B, et al. SsMYB113, a Schima superba MYB transcription factor, regulates the accumulation of flavonoids and functions in drought stress tolerance by modulating ROS generation[J]. Plant and Soil, 2022, 478(1-2): 427-444. doi: 10.1007/s11104-022-05466-6
[31] JAN R, KHAN M A, ASAF S, et al. Drought and UV Radiation stress tolerance in rice is improved by overaccumulation of non-enzymatic antioxidant flavonoids[J]. Antioxidants, 2022, 11(5): 917. doi: 10.3390/antiox11050917
[32] 邱 璐, 于邦友, 刘可可, 等. 遮荫对青钱柳苗生长和黄酮类化合物积累的影响[J]. 安徽农业大学学报, 2022, 49(03):359-367. doi: 10.13610/j.cnki.1672-352x.20220705.023
[33] YE J H, LV Y Q, LIU S R, et al. Effects of light intensity and spectral composition on the transcriptome profiles of leaves in shade grown tea plants (Camellia sinensis L. ) and regulatory network of flavonoid biosynthesis[J]. Molecules, 2021, 26(19): 5836. doi: 10.3390/molecules26195836