[1] Wen Z, Wen X, Li Q, et al. Changes of nitrogen deposition in China from 1980 to 2018[J]. Environment International, 2020, 144: 106022. doi: 10.1016/j.envint.2020.106022
[2] Yu G R, Jia Y L, He N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424-429. doi: 10.1038/s41561-019-0352-4
[3] 杨 璐, 汪金松, 赵 博, 等. 长期施氮对暖温带油松林土壤呼吸及其组分的影响[J]. 林业科学, 2021, 57(1):1-11. doi: 10.11707/j.1001-7488.20210101
[4] 王 凯, 张大鹏, 宋立宁, 等. 氮沉降和降水增加对榆树幼苗不同器官碳氮磷分配格局的影响[J]. 林业科学, 2020, 56(3):175-186.
[5] 吴伊波, 车荣晓, 马 双, 等. 高寒草甸植被细根生产和周转的比较研究[J]. 生态学报, 2014, 34(13):3529-3537.
[6] Jia S X, Mclaughlin N B, Gu J C, et al. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica[J]. Tree Physiology, 2013, 33(6): 579-589. doi: 10.1093/treephys/tpt040
[7] Han M G, Sun L J, Gan D Y, et al. Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species[J]. Soil Biology and Biochemistry, 2020, 151: 108019. doi: 10.1016/j.soilbio.2020.108019
[8] 刘 颖, 贺静雯, 余 杭, 等. 干热河谷优势灌木细根, 粗根与叶片养分(C、N、P)含量及化学计量比[J]. 山地学报, 2020, 38(5):29-39.
[9] 马玉珠, 钟全林, 靳冰洁, 等. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子[J]. 植物生态学报, 2015, 39(2):159-166. doi: 10.17521/cjpe.2015.0015
[10] 陈晓萍, 郭炳桥, 钟全林, 等. 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应[J]. 生态学报, 2018, 28(1):273-281.
[11] Yang C B, Zhang X P, Ni H J, et al. Soil carbon and associated bacterial community shifts driven by fine root traits along a chronosequence of moso bamboo (Phyllostachys edulis) plantations in subtropical China[J]. Science of The Total Environment, 2021, 752: 142333. doi: 10.1016/j.scitotenv.2020.142333
[12] 于立忠, 丁国泉, 朱教君, 等. 施肥对日本落叶松不同根序细根养分浓度的影响[J]. 应用生态学报, 2009, 20(4):747-753.
[13] 许 旸, 谷加存, 董雪云, 等. 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量[J]. 植物生态学报, 2011, 35(9):955-964.
[14] 苗 宇, 陈栎霖, 李贤伟, 等. 施肥对台湾桤木-扁穗牛鞭草复合模式下桤木细根形态特征、生物量及组织碳氮含量的影响[J]. 植物生态学报, 2013, 37(7):674-683.
[15] Lu M, Zhou X H, Luo Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 140(1-2): 234-244.
[16] Feng J G, Zhu B. A global meta-analysis of soil respiration and its components in response to phosphorus addition[J]. Soil Biology and Biochemistry, 2019, 135: 38-47. doi: 10.1016/j.soilbio.2019.04.008
[17] 平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展[J]. 植物生态学报, 2010, 34(1):100-111. doi: 10.3773/j.issn.1005-264x.2010.01.013
[18] Li W B, Jin C J, Guan D X, et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis[J]. Soil Biology & Biochemistry, 2015, 82: 112-118.
[19] Xu C L, Xing A J, Du E Z, et al. Effects of nitrogen addition on leaf nutrient stoichiometry in an old-growth boreal forest[J]. Ecosphere, 2021, 12(1): e03335.
[20] Jing H, Zhou H X, Wang G L, et al. Nitrogen addition changes the stoichiometry and growth rate of different organs in Pinus tabuliformis Seedlings[J]. Frontiers in Plant Science, 2017, 8: 1922. doi: 10.3389/fpls.2017.01922
[21] 刘 佳, 项文化, 徐 晓, 等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8):938-945. doi: 10.3773/j.issn.1005-264x.2010.08.006
[22] Wen Y X, Tong R, Zhang H, et al. N addition decreased stand structure diversity in young but increased in middle-aged Metasequoia glyptostroboides plantations[J]. Global Ecology and Conservation, 2021, 30: e01803. doi: 10.1016/j.gecco.2021.e01803
[23] 鲍士旦. 土壤农化分析.3版[M]. 北京: 中国农业出版社, 2000.
[24] Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian Rainforest[J]. Ecology, 2000, 81(7): 1925-1936. doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
[25] 邹安龙, 李修平, 倪晓凤, 等. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9):783-792. doi: 10.17521/cjpe.2018.0232
[26] Güsewell S, Koerselman W, Verhoeven J T. Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications, 2003, 13(2): 372-384. doi: 10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2
[27] Wang J N, Wang J Y, Wang Lei, et al. Does stoichiometric homeostasis differ among tree organs and with tree age? [J] Forest Ecology and Management, 2019, 453: 117637.
[28] 王建宇, 王庆贵, 闫国永, 等. 原始云冷杉、红松林树木生长对氮沉降的响应[J]. 北京林业大学学报, 2017, 39(4):21-28.
[29] Li Y, Tian D, Yang H, et al. Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests[J]. Functional Ecology, 2018, 32(1): 95-105. doi: 10.1111/1365-2435.12975
[30] 郭润泉, 熊德成, 宋涛涛, 等. 模拟氮沉降对杉木幼苗细根化学计量学特征的影响[J]. 生态学报, 2018, 38(17):123-132.
[31] Ågren G. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution, and Systematics, 2018, 39: 153-170.
[32] Yue K, Fornara D A, Yang W Q, et al. Effects of three global change drivers on terrestrial C: N: P stoichiometry: a global synthesis[J]. Global Change Biology, 2016, 23(6): 2450-2463.
[33] Peñuelas J, Sardans J, Rivas-ubach A, et al. The human-induced imbalance between C, N and P in Earth's life system[J]. Global Change Biology, 2015, 18(1): 3-6.
[34] Sardans J, Alonso R, Janssens I A, et al. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests[J]. Functional Ecology, 2017, 30(5): 676-689.
[35] 洪琮浩, 洪 震, 雷小华, 等. 氮添加对长序榆C、N、P养分含量及非结构性碳水化合物含量的影响[J]. 林业科学, 2020, 56(6):187-192.
[36] Lin G G, Gao M X, Zeng D H, et al. Aboveground conservation acts in synergy with belowground uptake to alleviate phosphorus deficiency caused by nitrogen addition in a larch plantation[J]. Forest Ecology and Management, 2020, 473: 118309. doi: 10.1016/j.foreco.2020.118309
[37] Wang H F, Wang Z Q, Dong X Y. Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China[J]. Plos One, 2019, 14(5): e0215126. doi: 10.1371/journal.pone.0215126
[38] Farrar J F, Jones D L. The control of carbon acquisition by roots[J]. New Phytologist, 2010, 147(1): 43-53.
[39] Iversen C M, Mccormack M L, Powell A S, et al. A global fine-root ecology database to address below-ground challenges in plant ecology[J]. New Phytologist, 2017, 215(1): 15-26. doi: 10.1111/nph.14486
[40] 陈克立. 氮添加对油松和辽东栎幼苗次生代谢过程的影响[D]. 杨凌: 西北农林科技大学, 2019.
[41] Kobe R K, Iyer M, Walters M B. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen[J]. Ecology, 2010, 91(1): 166-179. doi: 10.1890/09-0027.1