[1] 程瑞梅, 王 娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018, 54(7):130-136. doi: 10.11707/j.1001-7488.20180714
[2] Zhang G, Zhang P, Peng S, et al. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China[J]. Scientific Reports, 2017, 7(1): 11754. doi: 10.1038/s41598-017-12199-5
[3] Wang Y, Houlton B Z, Field C B. A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production[J]. Global Biogeochemical Cycles, 2007, 21(1).
[4] Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x
[5] Zeng Q, Li X, Dong Y, et al. Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China[J]. CATENA, 2016, 147: 481-488. doi: 10.1016/j.catena.2016.07.047
[6] 王振南, 杨惠敏. 植物碳氮磷生态化学计量对非生物因子的响应[J]. 草业科学, 2013, 30(6):927-934.
[7] Chen F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age[J]. Tree physiology, 2015, 35(10): 1106-1117. doi: 10.1093/treephys/tpv076
[8] 李 娜, 李 建, 刘海丰, 等. 东灵山3种落叶阔叶林的碳氮元素含量及比率[J]. 林业科学, 2009, 45(8):82-87. doi: 10.3321/j.issn:1001-7488.2009.08.014
[9] 李月芬, 王冬艳, Lasoukanh V, 等. 基于土壤化学性质与神经网络的羊草碳氮磷含量预测[J]. 农业工程学报, 2014, 30(3):104-111.
[10] 陈安娜, 王光军, 陈 婵, 等. 亚热带不同林龄杉木林叶-根-土氮磷化学计量特征[J]. 生态学报, 2018, 38(11):4027-4036.
[11] Sun L, Zhang B, Wang B, et al. Leaf elemental stoichiometry of Tamarix Lour. species in relation to geographic, climatic, soil, and genetic components in China[J]. Ecological Engineering, 2017, 106: 448-457. doi: 10.1016/j.ecoleng.2017.06.018
[12] Li Z, Yang L, Lu W, et al. Spatial patterns of leaf carbon, nitrogen stoichiometry and stable carbon isotope composition of Ranunculus natans CA Mey. (Ranunculaceae) in the arid zone of northwest China[J]. Ecological Engineering, 2015, 77: 9-17. doi: 10.1016/j.ecoleng.2015.01.010
[13] 赵 姗, 陈桂芬, 傅思维, 等. 基于KFCM-RBF优化算法的肥力评价与玉米产量预测[J]. 玉米科学, 2018, 26(5):150-156.
[14] 谢 文, 赵小敏, 郭 熙, 等. 基于RBF组合模型的山地红壤有机质含量光谱估测[J]. 林业科学, 2018, 54(6):16-23. doi: 10.11707/j.1001-7488.20180603
[15] 孙小香, 王芳东, 赵小敏, 等. 基于冠层光谱和BP神经网络的水稻叶片氮素浓度估算模型[J]. 中国农业资源与区划, 2019, 40(3):35-44.
[16] Zhao H, Xu L, Wang Q, et al. Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China[J]. Journal of Geographical Sciences, 2018, 28(6): 791-801. doi: 10.1007/s11442-018-1505-x
[17] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001-11006. doi: 10.1073/pnas.0403588101
[18] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578-580. doi: 10.1038/35046058
[19] 刘泽彬, 程瑞梅, 肖文发, 等. 三峡库区库首森林生态系统植物叶片碳氮磷化学计量特征研究[J]. 南京林业大学学报:自然科学版, 2017, 41(2):27-33.
[20] 阎恩荣, 王希华, 郭 明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J]. 植物生态学报, 2010, 34(1):48-57. doi: 10.3773/j.issn.1005-264x.2010.01.008
[21] 王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C:N:P化学计量学特征[J]. 植物生态学报, 2011, 35(6):587-595.
[22] 郭宝华, 刘广路, 范少辉, 等. 不同生产力水平毛竹林碳氮磷的分布格局和计量特征[J]. 林业科学, 2014, 50(6):1-9.
[23] Koreselman W, Meuleman A F. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450. doi: 10.2307/2404783
[24] 任书杰, 于贵瑞, 陶 波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12):2665-2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
[25] Kang H Z, Zhuang H, Wu L. Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe: an analysis based on local observations[J]. Forest Ecology and Management, 2011, 261(2): 195-202. doi: 10.1016/j.foreco.2010.10.004
[26] 魏鹏飞, 刘帅兵, 徐新刚, 等. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测[J]. 农业工程学报, 2019, 35(8):126-133, 335. doi: 10.11975/j.issn.1002-6819.2019.08.015
[27] Li Y F, Liang S, Zhao Y, et al. Machine learning for the prediction of L. chinensis carbon, nitrogen and phosphorus contents and understanding of mechanisms underlying grassland degradation[J]. Journal of Environmental Management, 2017, 192: 116-123.
[28] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937-3947. doi: 10.3321/j.issn:1000-0933.2008.08.054
[29] 林益明, 李振基, 杨志伟, 等. 福建武夷山黄山松群落的氮、磷累积和循环[J]. 热带亚热带植物学报, 1997, 5(2):26-32.
[30] Hedin L O. Global organization of terrestrial plant–nutrient interactions[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 10849-10850. doi: 10.1073/pnas.0404222101
[31] 李家湘, 徐文婷, 熊高明, 等. 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素[J]. 植物生态学报, 2017, 41(1):31-42.
[32] 孟庆权, 葛露露, 杨馨邈, 等. 福建三明两种人工林叶片碳氮磷化学计量特征的季节变化[J]. 应用与环境生物学报, 2019, 25(4):776-782.
[33] 李明军, 喻理飞, 杜明凤, 等. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系[J]. 生态学报, 2018, 38(21):7772-7781.
[34] 赵 琼, 曾德慧. 林木生长氮磷限制的诊断方法研究进展[J]. 生态学杂志, 2009, 28(1):122-128.
[35] Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8): 788-796. doi: 10.1111/j.1461-0248.2011.01641.x
[36] 魏大平, 张 健, 张丹桔, 等. 不同林冠郁闭度马尾松(Pinus massoniana)叶片养分再吸收率及其化学计量特征[J]. 应用与环境生物学报, 2017, 23(3):560-569.
[37] 何维明, 张新时. 沙地柏对毛乌素沙地3种生境中养分资源的反应[J]. 林业科学, 2002, 38(5):1-6. doi: 10.3321/j.issn:1001-7488.2002.05.001
[38] 邱岭军, 胡欢甜, 林宝平, 等. 不同林龄杉木养分重吸收率及其C:N:P化学计量特征[J]. 西北林学院学报, 2017, 32(4):22-27. doi: 10.3969/j.issn.1001-7461.2017.04.04
[39] Han W X, Tang L Y, Chen Y, et al. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants[J]. PLoS One, 2013, 8(12): e83366. doi: 10.1371/journal.pone.0083366
[40] De Campos M C R, Pearse S J, Oliveira R S, et al. Down-regulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment[J]. Annals of Botany, 2013, 111(3): 445-454. doi: 10.1093/aob/mcs299
[41] 郑璐嘉, 黄志群, 何宗明, 等. 林龄、叶龄对亚热带杉木人工林碳氮稳定同位素组成的影响[J]. 林业科学, 2015, 51(1):22-28.
[42] 郑璐嘉, 黄志群, 何宗明, 等. 不同林龄杉木人工林细根氮稳定同位素组成及其对氮循环的指示[J]. 生态学报, 2016, 36(8):2185-2191.