[1] 王泽云, 陈雄庭, 吴胡蝶. 橡胶树新型种植材料—体胚植株[J]. 热带农业科学, 2001, 6(94):11-15.
[2] 陈雄庭, 王泽云, 吴胡蝶, 等. 橡胶树新种植材料—自根幼态无性系[J]. 热带作物学报, 2002, 23(1):19-23. doi: 10.3969/j.issn.1000-2561.2002.01.004
[3] Carron M P, Lardet L, Leconte A, et. al. Field trials network emphasizes the improvement of growth and yield through micropropagation in rubber tree (Hevea brasiliensis, Muëll.-Arg. )[J]. Acta Hort, 2009(812): 485-492.
[4] Eline M, Stefaan W. Somatic embryogenesis as key technology for shaping the rubber tree of the future[J]. Frontiers in Plant Science, 2018, 9: 1-6. doi: 10.3389/fpls.2018.00001
[5] 王泽云, 曾宪松, 陈传琴, 等. 用离体花药诱导巴西橡胶植株的研究[J]. 热带作物学报, 1980, 1(1):16-26.
[6] Carron M P, Etienne H, Michaux-Ferriere N, et al. Somatic embryogenesis in rubber tree (Hevea brasiliensis Müell. Arg. )[J]. Biotechnol Agric For, 1995, 30: 353-369.
[7] Jayasree P K, Asokan M P, Sobha S, et al. Somatic embryogenesis and plant regeneration from immature stamens of Hevea brasiliensis (Muell. ) Arg[J]. Curr Sci, 1999, 76: 1242-1245.
[8] Montoro P, Carron M P, Granet F, et al. Development of new varietal types based on rejuvenation by somatic embryogenesis and propagation by conventional budding or microcutting in Hevea brasiliensis[C]//D Geelen. 7th IS on In Vitro Culture and Horticultural Breeding. Argentina: Acta Hort, 2012, 961: 553-576.
[9] 王泽云, 吴胡叶, 曾宪松, 等. 巴西橡胶花药胚的发生和花药植株起源的研究[J]. 热带作物学报, 1984, 5(1):9-13.
[10] 王亚丽. 巴西橡胶树体外体细胞胚发育的细胞学和组织学研究[D]. 海南: 华南热带农业大学, 2004: 36-37.
[11] 王天地, 华玉伟, 黄华孙. 橡胶树次生体胚植株染色体数目和DNA含量分析研究[J]. 热带农业科学, 2013, 33(5):33-37. doi: 10.3969/j.issn.1009-2196.2013.05.009
[12] Srichuay W, Kalawong S, Sirisom Y. Callus induction and somatic embryogenesis from anther cultures of Hevea brasiliensis (Muell. Arg. )[J]. Kasetsart J Nat Sci, 2014, 48: 364-375.
[13] Wang T D, Huang T D, Huang H S, et al. Origin of secondary somatic embryos and genetic stability of the regenerated plants in Hevea brasiliensis[J]. Journal of Rubber Research, 2017, 20(2): 101-116. doi: 10.1007/BF03449145
[14] 华玉伟, 黄华孙, 黄天带, 等. 利用胚状体快速繁殖巴西橡胶树自根幼态无性系的方法[P]. 发明专利, 中国, 200710184892.5, 1-11.
[15] Hua Y W, Huang T D, Huang H S. Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis[J]. Plant Breeding, 2010, 129(2): 202-207. doi: 10.1111/j.1439-0523.2009.01663.x
[16] 顾晓川, 徐正伟, 成 镜, 等. 植物凝胶和蔗糖对橡胶树体胚植株再生的影响[J]. 广西植物, 2018, 38(9):1164-1171. doi: 10.11931/guihaia.gxzw201712033
[17] 谭德冠. 巴西橡胶树体胚发生的改良及乳管分化研究[D]. 海口: 海南大学, 2011: 34.
[18] 李 玲, 管 艳, 梁国平, 等. TDZ对橡胶树花药愈伤组织诱导和体细胞胚发生的影响[J]. 中国农学通报, 2014, 30(1):20-25. doi: 10.11924/j.issn.1000-6850.2013-2136
[19] 黄凤翔, 管 艳, 桂明春, 等. 正交实验法优选橡胶树花药愈伤组织诱导的研究[J]. 北方园艺, 2014(18):109-111.
[20] 管 艳, 李 玲, 梁国平, 等. 不同品种橡胶树花药愈伤组织诱导、分化及植株再生的比较[J]. 中国农学通报, 2015, 31(4):40-44. doi: 10.11924/j.issn.1000-6850.2014-1970
[21] Nor Mayati C H. Effects of zeatin and kinetin on in vitro regeneration of Hevea brasiliensis RRIM 2025[J]. J Rubb Res, 2015, 18(3): 127-138.
[22] 张源源, 王祥军, 高新生, 等. 不同品系橡胶树花药愈伤诱导和体胚发生研究[J]. 中国农学通报, 2018, 34(3):70-75. doi: 10.11924/j.issn.1000-6850.casb17070056
[23] 桂明春, 李 玲, 管 艳, 等. MS营养成分对橡胶树花药愈伤组织诱导效果的评价[J]. 植物生理学报, 2019, 55(8):1239-1246.
[24] Satyavathi V V, Manga V, Rao M V S, et al. Genetic analysis of reciprocal differences in the inheritance of in vitro characters in pearl millet[J]. Genetics and molecular biology, 2016, 39: 54-61. doi: 10.1590/1678-4685-GMB-2014-0380
[25] Holtz C T, Tull A R, Merkle S A. Influence of species and hybrid status on induction of somatic embryogenesis in Castanea[J]. Canadian Journal of Forest Research, 2017, 47(3): 382-388. doi: 10.1139/cjfr-2016-0362
[26] Ruibin S U N, Ruiping T, Dan M A, et al. Comparative transcriptome study provides insights into acquisition of embryogenic ability in upland cotton during somatic embryogenesis[J]. Journal of Cotton Research, 2018, 1(1): 1-13. doi: 10.1186/s42397-018-0004-z
[27] Fan Y, Yu X, Guo H, et al. Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Dose IBA-Induced Embryogenic Redifferentiation in Cotton[J]. International journal of molecular sciences, 2020, 21(2): 426. doi: 10.3390/ijms21020426
[28] 黄华孙. 中国橡胶树育种五十年[M]. 北京: 中国农业出版社, 2005: 174-190.
[29] 赵建文. 我国育成橡胶树品种的遗传多样性分析及骨干亲本选择[D]. 海口: 海南大学, 2013: 15-18.
[30] 高新生, 黄华孙, 李维国. 中国天然橡胶主要品种及系谱(1996-2020年)[M]. 北京: 中国农业出版社, 2021.
[31] Hodges T K, Kamo K K, Imbrie C W, et al. Genotype specificity of somatic embryogenesis and regeneration in maize[J]. Bio/technology, 1986, 4(3): 219-223.
[32] Parrott W A, Williams E G, Hildebrand D F, et al. Effect of genotype on somatic embryogenesis from immature cotyledons of soybean[J]. Plant Cell, Tissue and Organ Culture, 1989, 16(1): 15-21. doi: 10.1007/BF00044068
[33] Niskanen A M, Lu J, Seitz S, et al. Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris)[J]. Tree Physiology, 2004, 24(11): 1259-1265. doi: 10.1093/treephys/24.11.1259
[34] Li C, Li X, Lin X, et al. Genotypic variation in the response to embryogenic callus induction and regeneration in Saccharum spontaneum[J]. Plant Genetic Resources, 2021, 19(2): 153-158. doi: 10.1017/S1479262121000198
[35] Gawel N J, Robacker C D. Genetic control of somatic embryogenesis in cotton petiole callus cultures[J]. Euphytica, 1990, 49(3): 249-253. doi: 10.1007/BF00036296
[36] 叶兴国, 徐惠君, 徐琼芳, 等. 小麦花药培养力的基因型差异和配合力分析[J]. 中国农业科学, 1996, 30(6):49-54.
[37] 何 平, 沈利爽, 陆朝福, 等. 水稻花药培养力的遗传分析及基因定位[J]. 遗传学报, 1998, 25(4):337-344.
[38] 张晓玲, 龙 芸, 葛 飞, 等. 玉米幼胚胚性愈伤组织再生能力相关性状遗传研究[J]. 遗传, 2017, 39(2):143-155.
[39] Hargreaves C L, Reeves C B, Gough K, et al. Overcoming the challenges of family and genotype representation and early cell line proliferation in somatic embryogenesis from control-pollinated seeds of Pinus radiata[J]. New Zealand Journal of Forestry Science (New Zealand Forest Research Institute Ltd (trading as Scion)), 2011, 41(7): 97-114.
[40] Li J, Wang M, Li Y, et al. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process[J]. Plant biotechnology journal, 2019, 17(2): 435-450. doi: 10.1111/pbi.12988
[41] Wang K, Shi L, Liang X, et al. The gene T aWOX5 overcomes genotype dependency in wheat genetic transformation[J]. Nature Plants, 2022, 8: 110-117.