[1] Firth J A, Voelkl B, Farine D R, et al. Experimental evidence that social relationships determine individual foraging behavior[J]. Current Biology, 2015, 25(23): 3138-3143. doi: 10.1016/j.cub.2015.09.075
[2] Bennison A, Bearhop S, Bodey T W, et al. Search and foraging behaviors from movement data: a comparison of methods[J]. Ecology and Evolution, 2018, 8(1): 13-24. doi: 10.1002/ece3.3593
[3] Bruce T J A, Wadhams L J, Woodcock C M. Insect host location: a volatile situation[J]. Trends in Plant Science, 2005, 10(6): 269-274. doi: 10.1016/j.tplants.2005.04.003
[4] Turlings T C J, Erb M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential[J]. Annual Review of Entomology, 2018, 63(1): 433-452. doi: 10.1146/annurev-ento-020117-043507
[5] Takabayashi J, Shiojiri K. Multifunctionality of herbivory-induced plant volatiles in chemical communication in tritrophic interactions[J]. Current Opinion in Insect Science, 2019, 32: 110-117. doi: 10.1016/j.cois.2019.01.003
[6] Ninkovic V, Markovic D, Rensing M. Plant volatiles as cues and signals in plant communication[J]. Plant, Cell & Environment, 2021, 44(4): 1030-1043.
[7] Hunter M D. Out of sight, out of mind: the impacts of root‐feeding insects in natural and managed systems[J]. Agricultural and Forest Entomology, 2001, 3(1): 3-9. doi: 10.1046/j.1461-9563.2001.00083.x
[8] Johnson S N, Gregory P J, Murray P J, et al. Host plant recognition by the root feeding clover weevil, Sitona lepidus (Coleoptera: Curculionidae)[J]. Bulletin of Entomological Research, 2004, 94(5): 433-439. doi: 10.1079/BER2004317
[9] Johnson S N, Rasmann S. Root-feeding insects and their interactions with organisms in the rhizosphere[J]. Annual Review of Entomology, 2015, 60(1): 517-535. doi: 10.1146/annurev-ento-010814-020608
[10] Johnson S N, Benefer C M, Frew A, et al. New frontiers in belowground ecology for plant protection from root-feeding insects[J]. Applied Soil Ecolog, 2016, 108: 96-107. doi: 10.1016/j.apsoil.2016.07.017
[11] Barsics F, Delory B M, Delaplace P, et al. Foraging wireworms are attracted to root-produced volatile aldehydes[J]. Journal of Pest Science, 2017, 90(1): 69-76. doi: 10.1007/s10340-016-0734-y
[12] Doane J F, Lee Y W, Klingler J, et al. The orientation response of Ctencera destructor and other wire worms (Coleoptera: Elateridae) to germinating grain and to carbon dioxide[J]. The Canadian Entomologist, 1975, 107(12): 1233-1252. doi: 10.4039/Ent1071233-12
[13] Johnson S N, Nielsen U N. Foraging in the dark–chemically mediated host plant location by belowground insect herbivores[J]. Journal of Chemical Ecology, 2012, 38(6): 604-614. doi: 10.1007/s10886-012-0106-x
[14] Reinecke A, Müller F, Hilker M. Attractiveness of CO2 released by root respiration fades on the background of root exudates[J]. Basic and Applied Ecology, 2008, 9(5): 568-576. doi: 10.1016/j.baae.2007.10.002
[15] Erb M, Huber M, Robert C A M, et al. The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology[J]. Advances in Insect Physiology, 2013, 45: 53-95. doi: 10.1016/B978-0-12-417165-7.00002-7
[16] Barsics F, Latine R, Gfeller A, et al. Do root-emitted volatile organic compounds attract wireworms[J]. Communications in Agricultural & Applied Biological Sciences, 2012, 77(4): 561-565.
[17] Barsics F, Haubruge É, Francis F, et al. The role of olfaction in wireworms: a review on their foraging behavior and sensory apparatus[J]. Biotechnologie, Agronomie, Société et Environnement, 2014, 18(4): 524-535.
[18] Zhang S K. Liu Y N, Shu J P, et al. DNA barcoding identification and genetic diversity of bamboo shoot wireworms (Coleoptera: Elateridae) in South China[J]. Journal of Asia-Pacific Entomology, 2019, 22(1): 140-150. doi: 10.1016/j.aspen.2018.12.017
[19] 舒金平, 滕 莹, 陈文强, 等. 筛胸梳爪叩甲的防治技术研究[J]. 林业科学研究, 2012, 25(5):620-625. doi: 10.3969/j.issn.1001-1498.2012.05.013
[20] 孟海林. 竹林金针虫寄主搜寻机制初步研究[D]. 北京: 中国林业科学研究院, 2017.
[21] 叶碧欢, 张亚波, 舒金平, 等. 竹林金针虫对绿僵菌及其代谢产物的行为反应[J]. 生态学杂志, 2016, 35(4):997-1002. doi: 10.13292/j.1000-4890.201604.028
[22] Brandl M, Schumann M, Przyklenk M, et al. Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum[J]. Journal of Pest Science, 2017, 90(2): 479-493. doi: 10.1007/s10340-016-0824-x
[23] Arce C C M, Theepan V, Schimmel B C J, et al. Plant-associated CO2 mediates long-distance host location and foraging behaviour of a root herbivore[J]. Elife, 2021, 10: e65575. doi: 10.7554/eLife.65575
[24] Johnson S N, Gregory P J. Chemically‐mediated host‐plant location and selection by root‐feeding insects[J]. Physiological Entomology, 2006, 31(1): 1-13. doi: 10.1111/j.1365-3032.2005.00487.x
[25] Bernklau E J, Bjostad L B. Behavioral responses of First-Instar western corn root worm (Coleoptera: chrysomeli dae) to carbon dioxide in a glass bead bioassay[J]. Journal of Economic Entomology, 1998, 91(2): 444-456. doi: 10.1093/jee/91.2.444
[26] Cooper J, Cherry R, Daroub S. Attraction of the corn wireworm, Melanotus communis (Coleoptera: Elateridae), to carbon dioxide[J]. Journal of Agricultural and Urban Entomology, 2019, 35(1): 30-35. doi: 10.3954/1523-5475-35.1.30
[27] 孟海林, 叶碧欢, 舒金平, 等. 筛胸梳爪叩甲幼虫对不同食物源的趋向行为及头部感器电镜扫描观察[J]. 生态学杂志, 2017, 36(8):2257-2265. doi: 10.13292/j.1000-4890.201708.014
[28] 任 旺, 叶秀娟, 李婷婷, 等. 麻竹笋中多酚类化合物的提取及挥发性成分分析[J]. 食品科学, 2014, 35(16):120-123. doi: 10.7506/spkx1002-6630-201416023
[29] Chung M J, Cheng S S, Liu C Y, et al. Profiling of volatile compounds with characteristic odors in Bambusa oldhamii shoots from Taiwan[J]. BioResources, 2021, 16(3): 5901-5914. doi: 10.15376/biores.16.3.5901-5914
[30] 杨瑶君, 秦 虹, 汪淑芳, 等. 长足大竹象的触角超微结构和对竹笋挥发物的触角电位反应[J]. 昆虫学报, 2010, 53(10):1087-1096. doi: 10.16380/j.kcxb.2010.10.016
[31] Chung M J, Cheng S S, Lin C Y, et al. Profiling of volatile compounds of Phyllostachys pubescens shoots in Taiwan[J]. Food Chemistry, 2012, 134(4): 1732-1737. doi: 10.1016/j.foodchem.2012.03.120
[32] Heil M. Herbivore-induced plant volatiles: targets, perception and unanswered questions[J]. New Phytologist, 2014, 204(2): 297-306. doi: 10.1111/nph.12977
[33] Hiltpold I, Bernklau E, Bjostad L B, et al. Nature, evolution and characterisation of rhizospheric chemical exudates affecting root herbivores[J]. Advances in Insect Physiology., 2013, 45: 97-157. doi: 10.1016/B978-0-12-417165-7.00003-9
[34] Robert C A M, Erb M, Duployer M, et al. Herbivore-induced plant volatiles mediate host selection by a root herbivore[J]. New Phytologist, 2012, 194(4): 1061-1069. doi: 10.1111/j.1469-8137.2012.04127.x
[35] Wang Y, Kays S J. Sweetpotato volatile chemistry in relation to sweetpotato weevil (Cylas formicarius) behavior[J]. Journal of the American Society for Horticultural Science, 2002, 127(4): 656-662. doi: 10.21273/JASHS.127.4.656
[36] Eilers E J, Talarico G, Hansson B S, et al. Sensing the underground–ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae[J]. PLoS One, 2012, 7(7): e41357. doi: 10.1371/journal.pone.0041357
[37] Mills N J, Heimpel G E. Could increased understanding of foraging behavior help to predict the success of biological control?[J] Current Opinion in Insect Science, 2018, 27: 26-31.