[1] Kotilinek M, Tesitelova T, Kosnar J, et al. Seed dispersal and realized gene flow of two forest orchids in a fragmented landscape[J]. Plant Biology, 2020, 22(3): 522-532. doi: 10.1111/plb.13099
[2] Baldauf C, Ciampi-Guillardi M, Aguirra T J, et al. Genetic diversity, spatial genetic structure and realised seed and pollen dispersal of Himatanthus drasticus (Apocynaceae) in the Brazilian savanna[J]. Conservation Genetics, 2014, 15(5): 1073-1083. doi: 10.1007/s10592-014-0600-5
[3] Hamrick J L, Trapnell D W. Using population genetic analyses to understand seed dispersal patterns[J]. Acta Oecologica, 2011, 37(6): 641-649. doi: 10.1016/j.actao.2011.05.008
[4] 何中声. 格氏栲天然林林窗微环境特征及幼苗更新动态研究[D]. 福州: 福建农林大学, 2012.
[5] 李霄峰, 胥 晓, 王碧霞, 等. 小五台山森林落叶层对天然青杨种群更新方式的影响[J]. 植物生态学报, 2012, 36(2):109-116.
[6] 李 宁, 白 冰, 鲁长虎. 植物种群更新限制—从种子生产到幼树建成[J]. 生态学报, 2011, 31(21):6624-6632.
[7] 杨永川, 穆建平, Tang Cindy Q, 等. 残存银杏群落的结构及种群更新特征[J]. 生态学报, 2011, 31(21):6396-6409.
[8] 王 玉. 海南岛木麻黄人工海防林天然更新困难的障碍机制[D]. 海口: 海南师范大学, 2020.
[9] 杨 彬. 海南岛木麻黄海防林天然更新特征、影响因素及评价[D]. 海口: 海南师范大学, 2019.
[10] 张 勇. 三种木麻黄的遗传改良研究[D]. 北京: 中国林业科学研究院, 2013.
[11] 张 勇, 仲崇禄, 陈 羽, 等. 木麻黄共生菌的研究进展[J]. 广东林业科技, 2006, 22(1):70-75.
[12] 仲崇禄, 白嘉雨, 张 勇. 我国木麻黄种质资源引种与保存[J]. 林业科学研究, 2005, 18(3):345-350. doi: 10.3321/j.issn:1001-1498.2005.03.023
[13] 仲崇禄, 张 勇. 我国木麻黄的引种培育和经营[J]. 林业科技开发, 2003, 17(2):3-5. doi: 10.3969/j.issn.1000-8101.2003.02.001
[14] 余 微, 仲崇禄, 张 勇, 等. 短枝木麻黄无性系鉴定及其指纹图谱构建[J]. 林业科学研究, 2019, 32(5):157-164.
[15] Li J, Qi C, Gu J, et al. Effect of sire population on the genetic diversity and fitness of F1 progeny in the endangered Chinese endemic Sinocalycanthus chinensis[J]. Ecology and Evolution, 2020, 10(3): 4091-4103.
[16] 刘 军, 乔卫阳, 邱勇斌, 等. 毛红椿天然群体遗传多样性及取样策略探讨[J]. 林业科学研究, 2019, 32(1):175-184.
[17] Ismail S A, Ghazoul J, Ravikanth G, et al. Evaluating realized seed dispersal across fragmented tropical landscapes: a two-fold approach using parentage analysis and the neighbourhood model[J]. New Phytologist, 2017, 214(3): 1307-1316. doi: 10.1111/nph.14427
[18] 王楠楠, 李金花, 王长海, 等. 基于SSR标记的父本分析研究油橄榄品种间的亲和性[J]. 林业科学研究, 2017, 30(4):640-647.
[19] Kullan A R K, Kulkarni A V, Kumar R S, et al. Development of microsatellite markers and their use in genetic diversity and population structure analysis in Casuarina[J]. Tree Genetics & Genomes, 2016, 12(3): 1-12.
[20] 孙文婷, 于大德, 董明亮, 等. 华北落叶松种子园控制授粉子代遗传多样性分析[J]. 西北植物学报, 2016, 36(8):1662-1670. doi: 10.7606/j.issn.1000-4025.2016.08.1662
[21] 杨汉波, 张 蕊, 周志春. 木荷种子园的遗传多样性和交配系统[J]. 林业科学, 2016, 52(12):66-73. doi: 10.11707/j.1001-7488.20161208
[22] Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemical Bulletin, 1987, 19: 11-15.
[23] 李 振, 仲崇禄, 张 勇, 等. 木麻黄SSR-PCR反应体系的建立与优化[J]. 植物研究, 2021, 41(2):312-320. doi: 10.7525/j.issn.1673-5102.2021.02.019
[24] 张冬梅, 沈熙环, 张华新, 等. 林木群体基因流及父本分析的研究进展[J]. 林业科学研究, 2003, 16(4):488-494. doi: 10.3321/j.issn:1001-1498.2003.04.019
[25] 何田华, 葛 颂. 植物种群交配系统、亲本分析以及基因流动研究[J]. 植物生态学报, 2001, 25(2):144-154. doi: 10.3321/j.issn:1005-264X.2001.02.003
[26] 许秀玉, 王明怀, 魏 龙, 等. 51个木麻黄无性系遗传多样性的ISSR分析[J]. 林业科学研究, 2012, 25(6):691-696. doi: 10.3969/j.issn.1001-1498.2012.06.003
[27] 朱小虎. 新疆密叶杨群体遗传多样性及遗传结构研究[D]. 北京: 北京林业大学, 2019.
[28] 陈仕昌. 1.5代杉木种子园种实差异及遗传多样性研究[D]. 南宁: 广西大学, 2019.
[29] 李晓春. 基于ISSR和SSR标记的青钱柳天然群体结构及遗传多样性研究[D]. 南京: 南京林业大学, 2017.
[30] Dow B D, Ashely M V. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites[J]. Journal of Heredity, 1998, 89(1): 62-70. doi: 10.1093/jhered/89.1.62
[31] Burczyk J, Adams W T, Shimizu J Y. Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuata Lemmon.) stand[J]. Heredity, 1996, 77(3): 251-260.
[32] Dow B D, Ashley M V. Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa[J]. Molecular ecology, 1996, 5(5): 615-627. doi: 10.1111/j.1365-294X.1996.tb00357.x
[33] Hamrick J L, Murawski D A, Nason J D. The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations[J]. Vegetatio, 1993, 107/108: 281-297.
[34] Broadhurst L. Pollen dispersal in fragmented populations of the dioecious wind-pollinated tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-Oak; Allocasuarinaceae)[J]. PLOS ONE, 2015, 10(3): e119498.
[35] Nathan R, Perry G, Cronin J T, et al. Methods for estimating long-distance dispersal[J]. Oikos, 2003, 103(2): 261-273. doi: 10.1034/j.1600-0706.2003.12146.x
[36] Damschen E I, Baker D V, Bohrer G, et al. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3484-3489. doi: 10.1073/pnas.1308968111
[37] Heydel F, Cunze S, Bernhardt-Roemermann M, et al. Long-distance seed dispersal by wind: disentangling the effects of species traits, vegetation types, vertical turbulence and wind speed[J]. Ecological Research, 2014, 29(4): 641-651. doi: 10.1007/s11284-014-1142-5