[1] Yokota T, Ohnishi T, Shibata K, et al. Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern[J]. Phytochemistry, 2017, 136: 46-55. doi: 10.1016/j.phytochem.2016.12.020
[2] Bajguz A, Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants[J]. Phytochemistry, 2003, 62(7): 1027-1046. doi: 10.1016/S0031-9422(02)00656-8
[3] 李 辉, 左钦月, 涂升斌. 油菜素内酯生物合成和代谢研究进展[J]. 植物生理学报, 2015, 51(11):1787-1798.
[4] Yang C, Zhang C, Lu Y, et al. The mechanisms of brassinosteroids' action: from signal transduction to plant development[J]. Molecular Plant, 2011, 4(4): 588-600. doi: 10.1093/mp/ssr020
[5] Wei Z, Li J. Brassinosteroids Regulate Root Growth, Development, and Symbiosis[J]. Molecular Plant, 2016, 9(1): 86-100. doi: 10.1016/j.molp.2015.12.003
[6] Nolan T M, Vukasinovic N, Liu D, et al. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses[J]. Plant Cell, 2020, 32(2): 295-318. doi: 10.1105/tpc.19.00335
[7] 周扬锟, 廖锵涛, 丁先锋, 等. 芸苔素内酯调控植物生长发育及抗逆性的研究进展[J]. 农业科学, 2020, 10(6):407-418.
[8] Wei Z, Li J. Regulation of brassinosteroid homeostasis in higher plants[J]. Frontiers in Plant Science, 2020, 11: 583622. doi: 10.3389/fpls.2020.583622
[9] Clouse S D, Langford M, McMorris T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiology, 1996, 111(10): 671-678.
[10] Saini S, Sharma I, Pati P K. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks[J]. Frontiers in Plant Science, 2015, 6: 950.
[11] 刘少金, 肖正强, 吴照祥. 基于Web of Science的油菜素甾醇研究态势分析[J]. 农业图书情报学报, 2020, 32(6):49-57.
[12] Ye H, Li L, Yin Y. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways[J]. Journal of Integrative Plant Biology, 2011, 53(6): 455-468. doi: 10.1111/j.1744-7909.2011.01046.x
[13] Zhao B, Li J. Regulation of brassinosteroid biosynthesis and inactivation[J]. Journal of Integrative Plant Biology, 2012, 54(10): 746-759. doi: 10.1111/j.1744-7909.2012.01168.x
[14] Bajguz A, Chmur M, Gruszka D. Comprehensive overview of the brassinosteroid biosynthesis pathways: substrates, products, inhibitors, and connections[J]. Frontiers in Plant Science, 2020, 11: 1034.
[15] Wang Z, Bai M, Oh E, et al. Brassinosteroid signaling network and regulation of photomorphogenesis[J]. Annual Review of Genetics, 2012, 46(1): 701-724.
[16] Gruszka D. Genetic and molecular bases of brassinosteroid metabolism and interactions with other phytohormones[M] // Brassinosteroids: Plant Growth and Development, 2019: 219-249.
[17] Neff M M, Nguyen S M, Malancharuvil E J, et al. BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 1999, 96(26): 15316-15323. doi: 10.1073/pnas.96.26.15316
[18] Yang Z, Zhang C, Yang X, et al. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation[J]. New Phytologist, 2014, 203(2): 437-448. doi: 10.1111/nph.12824
[19] Ohnishi T, Nomura T, Watanabe B, et al. Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism[J]. Phytochemistry, 2006, 67(17): 1895-1906. doi: 10.1016/j.phytochem.2006.05.042
[20] Sakamoto T, Kawabe A, Tokida-Segawa A, et al. Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism[J]. The Plant Journal, 2011, 67(1): 1-12. doi: 10.1111/j.1365-313X.2011.04567.x
[21] 张 杰, 邓孟胜, 蔡诚诚, 等. 马铃薯StCYP734A1基因克隆、表达模式及生物信息学分析[J]. 分子植物育种, 2019, 17(15):4883-4893.
[22] Que F, Wang Y, Xu Z, et al. DcBAS1, a carrot brassinosteroid catabolism gene, modulates cellulose synthesis[J]. Journal of Agricultural and Food Chemistry, 2019, 67(49): 13526-13533. doi: 10.1021/acs.jafc.9b05241
[23] Meaney S. Is C-26 hydroxylation an evolutionarily conserved steroid inactivation mechanism?[J]. Faseb Journal, 2005, 19(10): 1220-1224. doi: 10.1096/fj.04-3304hyp
[24] Tanaka K, Asami T, Yoshida S, et al. Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism[J]. Plant Physiology, 2005, 138(2): 1117-1125. doi: 10.1104/pp.104.058040
[25] Youn J H, Kim M K, Kim E J, et al. ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana[J]. Phytochemistry, 2016, 122: 34-44. doi: 10.1016/j.phytochem.2015.11.006
[26] 潘庆杰. 地涌金莲种群遗传多样性研究[D]. 北京: 中国林业科学研究院, 2007.
[27] 侯健华. 地涌金莲组织培养中的褐化抑制研究[D]. 北京: 中国林业科学研究院, 2015.
[28] 郝宏刚, 李志英, 丛汉卿, 等. 牛大力总RNA提取的CTAB法改进及优化[J]. 广东农业科学, 2012, 39(18):165-166. doi: 10.3969/j.issn.1004-874X.2012.18.056
[29] 邹其珍. 四个水稻油菜素内酯降解相关基因的功能研究[D]. 北京: 中国农业科学院, 2020.
[30] 周晓艺, 薛红卫. 生长素与油菜素甾醇相互作用机制的研究进展[J]. 中国科学: 生命科学, 2013, 43(12):1047-1053.
[31] De Vleesschauwer D, Van Buyten E, Satoh K, et al. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice[J]. Plant Physiology, 2012, 158(4): 1833-1846. doi: 10.1104/pp.112.193672
[32] Divi U K, Rahman T, Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways[J]. BMC Plant Biology, 2010, 10: 151-164. doi: 10.1186/1471-2229-10-151