[1] 杨 颖, 王 成, 李 伟. 空气花粉污染研究的现状与趋势[J]. 中国城市林业, 2007, 5(2):52-53. doi: 10.3969/j.issn.1672-4925.2007.02.020
[2] 杨 颖, 王 成, 郄光发. 城市植源性污染及其对人的影响[J]. 林业科学, 2008, 44(4):151-155. doi: 10.3321/j.issn:1001-7488.2008.04.027
[3] 李 倩, 靳 颖, 华振玲, 等. 空气致敏花粉污染研究进展[J]. 生态学报, 2005, 25(2):334-338. doi: 10.3321/j.issn:1000-0933.2005.02.023
[4] 洪 涛, 麻左力, 陈敬诗. 大叶杨花部形态及其在杨属的分类位置[J]. 植物学报, 1987, 29(3):236-241.
[5] 李文钿, 马丰山. 木本植物有性杂交生殖生物学图谱[M]. 北京: 科学出版社, 2011: 15-16.
[6] 张冰玉, 苏晓华, 周祥明. 杨树花发育相关基因及基因工程调控[J]. 分子植物育种, 2007,5(5):695-700. doi: 10.3969/j.issn.1672-416X.2007.05.016
[7] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development[J]. Nature, 1991, 353(6339): 31-37. doi: 10.1038/353031a0
[8] Theien G. Development of floral organ identity: Stories from the MADS house[J]. Current Opinion in Plant Biology, 2001, 4(1): 75-85. doi: 10.1016/S1369-5266(00)00139-4
[9] Cseke L J, Zheng J, Podila G K. Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development[J]. Gene, 2003, 318(1): 55-67.
[10] Sheppard L A, Brunner A M, et al. A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers[J]. Plant Physiol, 2000, 124(2): 627-640. doi: 10.1104/pp.124.2.627
[11] Brunner A M, Rottmann W H, Sheppard L A, et al. Structure and expression of duplicate AGAMOUS orthologues in poplar[J]. Plant Molecular Biology, 2000, 44(5): 619-634. doi: 10.1023/A:1026550205851
[12] Lu H, Klocko A L, Brunner A M, et al. RNAi suppression of AGAMOUS and SEEDSTICK alters floral organ identity and impairs floral organ determinacy, ovule differentiation, and seed-hair development in Populus[J]. New Phytologist, 2019, 222(2): 923-937. doi: 10.1111/nph.15648
[13] Cseke L J, Cseke S B, Ravinder N, et al. SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees[J]. Gene, 2005, 358(1): 1-16.
[14] Kramer E M. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms[J]. Genetics, 2004, 166(2): 1011-1023. doi: 10.1093/genetics/166.2.1011
[15] Zahn L M, Leebens-Mack J H, Arrington J M, et al. Conservation and divergence in the AGAMOUS subfamily of MADS‐box genes: evidence of independent sub‐ and neofunctionalization events[J]. Evolution & Development, 2006, 8(1): 30-45.
[16] Dreni L, Kater M M. MADS reloaded: evolution of the AGAMOUS subfamily genes[J]. New Phytologist, 2014, 201(3): 717-732. doi: 10.1111/nph.12555
[17] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature, 2001, 409(6819): 525-529. doi: 10.1038/35054083
[18] Ito T, Wellmer F, Yu H, et al. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS[J]. Nature, 2004, 430(6997): 356-60. doi: 10.1038/nature02733
[19] Ito T, Ng K H, Lim T S, et al. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis[J]. Plant Cell, 2007, 19(11): 3516-3529. doi: 10.1105/tpc.107.055467
[20] Wilson Z A, Zhang D B. From Arabidopsis to rice: pathways in pollen development[J]. J Exp Bot, 2009, 60(5): 1479-1492. doi: 10.1093/jxb/erp095
[21] Bowman J L. Genes directing flower development in Arabidopsis[J]. Plant Cell, 1989, 1(1): 37-52.
[22] Yanofsky M F, Ma H, Bowman J L, et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors[J]. Nature, 1990, 346(6279): 35-39. doi: 10.1038/346035a0
[23] Dennis L, Peacock J. Genes directing flower development in Arabidopsis[J]. Plant Cell, 2019, 31(6): 1192-1193. doi: 10.1105/tpc.19.00276
[24] Sather D N, Jovanovic M, Golenberg E M. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism[J]. BMC Plant Biol, 2010, 10: 46. doi: 10.1186/1471-2229-10-46
[25] 李正理. 植物组织制片学[M]. 北京: 北京大学出版社, 1996: 130-138.
[26] Sun J, Niu Q W, Tarkowski P, et al. The ArabidopsisAtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in De Novo cytokinin biosynthesis[J]. Plant Physiology, 2003, 131(1): 167-176. doi: 10.1104/pp.011494
[27] 高志红, 张玉明, 王 珊, 等. 植物花发育调控基因AGAMOUS的研究进展[J]. 西北植物学报, 2008, 28(3):638-644. doi: 10.3321/j.issn:1000-4025.2008.03.034
[28] 龚霞峰, 胡江琴, 刘姬艳, 等. 植物AGAMOUS同源基因的表达调控[J]. 杭州师范大学学报:自然科学版, 2009, 8(3):218-223.
[29] 王 雪, 田京京, 李 爽, 等. AGAMOUS在花发育中的核心功能研究进展[J]. 分子植物育种, 2020, 18(9):2878-2885.
[30] Angenent G C, Franken J, Busscher M, et al. A novel class of MADS box genes is involved in ovule development in petunia[J]. The Plant Cell, 1995, 7(10): 1569-1582.
[31] Cronk Q, Soolanayakanahally R, Bräutigam K. Gene expression trajectories during male and female reproductive development in balsam poplar (Populus balsamifera L.)[J]. Sci Rep, 2020, 10(1): 8413. doi: 10.1038/s41598-020-64938-w
[32] Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2): 183-198. doi: 10.1016/j.gene.2004.12.014
[33] Shim D, Ko J H, Kim W C, et al. A molecular framework for seasonal growth-dormancy regulation in perennial plants[J]. Hortic Res, 2014, 1(1): 14059. doi: 10.1038/hortres.2014.59
[34] Busov V B. Plant development: dual roles of Poplar SVL in vegetative bud dormancy[J]. Curr Biol, 2019, 29(2): R68-R70. doi: 10.1016/j.cub.2018.11.061
[35] Cseke L J, Ravinder N, Pandey A K, et al. Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development[J]. Gene, 2007, 391(1-2): 209-222. doi: 10.1016/j.gene.2006.12.033
[36] Hoenicka H, Lautner S, Klingberg A, et al. Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.)[J]. Planta, 2012, 235(2): 359-373. doi: 10.1007/s00425-011-1507-8
[37] Leseberg CH, Li A, Kang H, et al. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa[J]. Gene, 2006, 378(1): 84-94.
[38] Mizukami Y, Ma H. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA[J]. 1995, 28(5): 767-784.
[39] Goodrich J, Puangsomlee P, Martin M, et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis[J]. Nature, 1997, 386(6620): 44-51. doi: 10.1038/386044a0
[40] Chen Z, Rao P, Yang X, et al. A global view of transcriptome dynamics during male floral bud development in Populus tomentosa[J]. Sci Rep, 2018, 8(1): 722. doi: 10.1038/s41598-017-18084-5
[41] Brunner A M, Nilsson O. Revisiting tree maturation and floral initiation in the poplar functional genomics era[J]. New Phytologist, 2010, 164(1): 43-51.
[42] Riechmann J L, Meyerowitz E M. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity[J]. Mol Biol Cell, 1997, 8(7): 1243-1259. doi: 10.1091/mbc.8.7.1243
[43] Fan H Y, Hu Y, Tudor M, et al. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins[J]. Plant J, 1997, 12(5): 999-1010. doi: 10.1046/j.1365-313X.1997.12050999.x
[44] Favaro R, Pinyopich A, Battaglia R, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis[J]. Plant Cell, 2003, 15(11): 2603-2611. doi: 10.1105/tpc.015123