[1] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination[J]. New Phytologist, 2006, 171(3): 501-523. doi: 10.1111/j.1469-8137.2006.01787.x
[2] Cadman C S C, Toorop P E, Hilhorst H W M, et al. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism[J]. The Plant Journal, 2006, 46(5): 805-822. doi: 10.1111/j.1365-313X.2006.02738.x
[3] Chiwocha S D S, Cutler A J, Abrams S R, et al. The etr1‐2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist‐chilling and germination[J]. Plant Journal, 2005, 42(1): 35-48. doi: 10.1111/j.1365-313X.2005.02359.x
[4] Li Z, Zhang J, Liu Y, et al. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.[J]. BMC Plant Biology, 2016, 16(1): 1-15. doi: 10.1186/s12870-015-0700-5
[5] Magwa R A, Zhao H, Xing Y. Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L.)[J]. BMC genetics, 2016, 17(1): 28. doi: 10.1186/s12863-016-0340-2
[6] Qi J, Zheng N, Zhang B, et al. Mining genes involved in the stratification of Paris polyphylla seeds using high-throughput embryo Transcriptome sequencing[J]. BMC genomics, 2013, 14(1): 358. doi: 10.1186/1471-2164-14-1
[7] 张成才, 张子璇, 张文静, 等. 利用转录组测序分析与华重楼种子休眠解除相关差异基因[J]. 中国中药杂志, 2020, 45(8):1893-1900.
[8] Cao D, Xu H, Zhao Y, et al. Transcriptome and degradome sequencing reveals dormancy mechanisms of Cunninghamia lanceolata seeds[J]. Plant physiology, 2016, 172(4): 2347-2362. doi: 10.1104/pp.16.00384
[9] Song Q, Cheng S, Chen Z, et al. Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis[J]. BMC plant biology, 2019, 19(1): 1-17. doi: 10.1186/s12870-018-1600-2
[10] Kanjana W, Suzuki T, Ishii K, et al. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch)[J]. BMC genomics, 2016, 17(1): 575. doi: 10.1186/s12864-016-2973-y
[11] Wang D, Gao Z, Du P, et al. Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica)[J]. Frontiers in Plant Science, 2016, 6: 1-17.
[12] Ma Y, Cui J, Lu X, et al. Transcriptome analysis of two different developmental stages of Paeonia lactiflora seeds[J]. International Journal of Genomics, 2017, 2017(2): 1-10.
[13] 冷 容, 胡彦婷, 周艳丽, 等. 人参种胚不同后熟发育阶段比较转录组学分析[J]. 分子植物育种, 2020, 18(17):5638-5649.
[14] 宁 伟, 范文丽, 李宏博, 等. 变温及GA3处理对辽东楤木种子解除休眠过程中代谢调控的影响[J]. 园艺学报, 2006, 33(3):649-652. doi: 10.3321/j.issn:0513-353X.2006.03.041
[15] 王昊一, 李宇玲, 朱 乐, 等. 油菜种子休眠性对脂肪酸积累的影响及其分子机制[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4):397-403.
[16] Yang K, Yang L, Fan W, et al. Illumina‐based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after‐ripening process[J]. Physiologia plantarum, 2019, 167(4): 597-612. doi: 10.1111/ppl.12904
[17] Masanori O, Ayuko K, Mistunori S, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-Hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiology, 2006, 141(1): 97-107. doi: 10.1104/pp.106.079475
[18] Hauvermale A L, Ariizumi T, Steber C M. Gibberellin signaling: a theme and variations on DELLA repression[J]. Plant Physiology, 2012, 160(1): 83-92. doi: 10.1104/pp.112.200956
[19] 孙同玉. 西洋参种子休眠解除与萌发分子机理研究[D]. 北京: 北京协和医学院, 2015.
[20] Griffiths J, Murase K, Rieu I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. Plant Cell, 2006, 18(12): 3399-3414. doi: 10.1105/tpc.106.047415
[21] 陈 静, 江 玲, 王春明, 等. 花生种子休眠解除过程中相关基因的表达分析[J]. 作物学报, 2015, 41(6):845-860.
[22] Calvo A P, Nicolás C, Lorenzo O, et al. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds[J]. Journal of Plant Growth Regulation, 2004, 23(1): 44-53.
[23] 张俊杰, 韦 霄, 柴胜丰, 等. 珍稀濒危植物金丝李种子的休眠机理[J]. 生态学杂志, 2018, 37(5):1371-1381.
[24] 张俊杰, 柴胜丰, 王满莲, 等. 珍稀濒危植物金丝李种子脱水耐性和贮藏特性[J]. 广西植物, 2019, 39(2):199-208. doi: 10.11931/guihaia.gxzw201802027
[25] 张俊杰, 柴胜丰, 韦 霄, 等. 珍稀濒危植物金丝李种子的萌发特性[J]. 林业科学, 2018, 54(4):174-185. doi: 10.11707/j.1001-7488.20180420
[26] 张俊杰, 韦 霄, 吴少华, 等. 金丝李果实、种子形态分化及外源物质对种子萌发和幼苗生长的影响[J]. 广西植物, 2018, 38(4):509-520. doi: 10.11931/guihaia.gxzw201708007
[27] Zhang J, Wei X, Chai S, et al. Genetic diversity and population structure of Garcinia paucinervis, an endangered species using microsatellite markers[J]. Conservation Genetics, 2019, 20(4): 837-849. doi: 10.1007/s10592-019-01176-2
[28] 刘 伟, 郭光艳, 秘彩莉. 转录组学主要研究技术及其应用概述[J]. 生物学教学, 2019, 44(10):2-5. doi: 10.3969/j.issn.1004-7549.2019.10.001
[29] Bentsink L, Koornneef M. Seed dormancy and germination[J]. The Arabidopsis Book/American Society of Plant Biologists, 2008, e0119: 1-18.
[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[31] Hiroyuki N, Georgew B, Jderek B. Germination—still a mystery[J]. Plant Science, 2010, 179(6): 574-581. doi: 10.1016/j.plantsci.2010.02.010
[32] Simmonds J A, Simpson G M. Regulation of the Krebs cycle and PPP activities in the control of dormancy in Avena fatua[J]. Canadian Journal of Botany, 1972, 50(5): 1041-1048. doi: 10.1139/b72-127
[33] Zhang X, Liu G, Li T, et al. Differential proteome analysis of mature and germinated seeds of Magnolia sieboldii K. Koch[J]. Trees, 2014, 28(3): 859-870. doi: 10.1007/s00468-014-0998-x
[34] 苏 贺, 詹延廷, 李 昊, 等. GC-FID技术分析巫山淫羊藿种子休眠解除过程中脂肪酸含量变化[J]. 中国农业大学学报, 2017, 22(1):19-28. doi: 10.11841/j.issn.1007-4333.2017.01.03
[35] 代玉荣, 吴灵东, 张 鹏. 等. 水曲柳种子次生休眠解除过程中的物质转化与内源激素变化[J]. 东北林业大学学报, 2011, 39(5):17-19. doi: 10.3969/j.issn.1000-5382.2011.05.006
[36] Lindberg S, Kader M A, Yemelyanov V. Calcium signalling in plant cells under environmental stress[J]. International Journal of Technology & Human Interaction, 2012, 8(3): 46-53.
[37] Somyong S, Munkvold J D, Tanaka J, et al. Comparative genetic analysis of a wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling[J]. Functional & integrative genomics, 2011, 11(3): 479-490.
[38] Leckie C P, Mcainsh M R, Allen G J, et al. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26): 15837-15842. doi: 10.1073/pnas.95.26.15837
[39] 许 涛, 李天来, 齐明芳. 钙处理对乙烯诱导的番茄离体花柄脱落的抑制作用[J]. 园艺学报, 2007, 34(2):366-370. doi: 10.3321/j.issn:0513-353X.2007.02.019
[40] Schwarz N, Armbruster U, Iven T, et al. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids[J]. Plant and Cell Physiology, 2015, 56(2): 346-357. doi: 10.1093/pcp/pcu167
[41] Elizabeth F. The ecology and physiology of viviparous and recalcitrant seeds[J]. Annual Review of Ecology and Systematics, 2000, 31: 107-138. doi: 10.1146/annurev.ecolsys.31.1.107
[42] Argyris J, Dahal P, Truco M J, et al. Genetic analysis of lettuce seed thermoinhibition[J]. Acta Horticulturae, 2008, 782: 23-34.
[43] Eiji N, Masanori O, Kiyoshi T, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010, 20(2): 55-67. doi: 10.1017/S0960258510000012
[44] Wang X, Wang L, Wang Y, et al. Arabidopsis PCaP2 plays an important role in chilling tolerance and aba response by activating CBF- and SnRK2-mediated transcriptional regulatory network[J]. Frontiers in Plant Science, 2018, 9: 1-13. doi: 10.3389/fpls.2018.00001
[45] Ogawa M, Hanada A, Yamauchi Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination[J]. Plant Cell, 2003, 15(7): 1591-1604. doi: 10.1105/tpc.011650
[46] Qi J, Sun P, Liao D, et al. Transcriptomic analysis of American ginseng seeds during the dormancy release process by RNA-Seq[J]. PLoS One, 2015, 10(3): e0118558. doi: 10.1371/journal.pone.0118558
[47] Dill A, Jung H S, Sun T P. The DELLA motif is essential for gibberellin-induced degradation of RGA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 14162-14167. doi: 10.1073/pnas.251534098
[48] Wu J, Kong X, Wan J, et al. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1[J]. Plant Physiology, 2011, 157(4): 2120-2130. doi: 10.1104/pp.111.185272
[49] Kucera B, Cohn M A, Leubnermetzger G. Plant hormone interactions during seed dormancy release and germination[J]. Seed Science Research, 2005, 15(4): 281-307. doi: 10.1079/SSR2005218
[50] Hermann K, Meinhard J, Dobrev P, et al. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds[J]. Journal of Experimental Botany, 2007, 58(11): 3047-3060. doi: 10.1093/jxb/erm162
[51] Lopez-Molina L, Mongrand S, Chua N H. A Postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8): 4782-4787. doi: 10.1073/pnas.081594298
[52] Goh H H, Bakar S A, Azlan N D K, et al. Transcriptional reprogramming during Garcinia-type recalcitrant seed germination of Garcinia mangostana[J]. Scientia Horticulturae, 2019, 257: 108727. doi: 10.1016/j.scienta.2019.108727