[1] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540-550. doi: 10.1046/j.1461-0248.2000.00185.x
[2] 张天霖, 邱治军, 吴仲民, 等. 粤北针阔混交林不同器官碳氮磷钾的生态化学计量特征[J]. 林业科学研究, 2021, 34(2):149-157.
[3] 王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C: N: P化学计量学特征[J]. 植物生态学报, 2011, 35(6):587-595.
[4] Huang J B, Liu W Y, Li S, et al. Ecological stoichiometry of the epiphyte community in a subtropical forest canopy[J]. Ecology and Evolution, 2019, 9(24): 14394-14406. doi: 10.1002/ece3.5875
[5] Zhang Q, Liu Q, Yin H J. C: N: P stoichiometry of Ericaceae species in shrubland biomes across Southern China: influences of climate, soil and species identity[J]. Journal of Plant Ecology, 2019, 12(2): 346-357. doi: 10.1093/jpe/rty033
[6] Dagne T D, Zhang K, Yuan S Q, et al. Ecological stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in leaf, root, stem, and soil in four wetland plants communities in Shengjin Lake, China [M]. Plos One, 2020, 15(8): e0230089.
[7] Kerkhoff A J, Enquist B J, Elser J J, et al. Plant allometry, stoichiometry and the temperature-dependence of primary productivity[J]. Global Ecology and Biogeography, 2005, 14(6): 585-598. doi: 10.1111/j.1466-822X.2005.00187.x
[8] 郑跃芳, 钟全林, 程栋梁, 等. 亚热带4种林木幼苗的碳氮磷含量及其化学计量比特征[J]. 应用与环境生物学报, 2017, 23(2):379-383.
[9] Sun L W, Chen J W, Deng Q. Research progress of terrestrial plants N/P ecological stoichiometry under global change[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 534-540.
[10] Austin A T, Vitousek P M. Introduction to a virtual special issue on ecological stoichiometry and global change[J]. New Phytologist, 2012, 196(3): 649-651. doi: 10.1111/j.1469-8137.2012.04376.x
[11] Reis F, MartinsF B, Torres R R, et al. Climate change impact on the initial development of tropical forest species: a multi-model assessment[J]. Theoretical and Applied Climatology, 2021, 145(1): 533-547.
[12] Minden V, Kleyer M. Internal and external regulation of plant organ stoichiometry[J]. Plant Biology, 2014, 16(5): 897-907. doi: 10.1111/plb.12155
[13] Lepš J, Těšitel J. Root hemiparasites in productive communities should attack competitive host, and harm them to make regeneration gaps[J]. Journal of Vegetation Science, 2015, 26(3): 407-408. doi: 10.1111/jvs.12284
[14] Zhang J H, Zhao N, He N P. C: N: P stoichiometry in China's forests: from organs to ecosystems[J]. Functional Ecology, 2018, 32(1): 50-60. doi: 10.1111/1365-2435.12979
[15] 皮发剑, 舒利贤, 喻理飞, 等. 黔中喀斯特10种优势树种根茎叶化学计量特征及其关联性[J]. 生态环境学报, 2017, 26(4):628-634.
[16] 张雨鉴, 宋娅丽, 王克勤. 滇中亚高山森林乔木层各器官生态化学计量特征[J]. 生态学杂志, 2019, 38(6):1669-1678.
[17] Yang Y, Liu B R, An S S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China[J]. Catena, 2018, 166: 328-338. doi: 10.1016/j.catena.2018.04.018
[18] 李单凤, 于顺利, 王国勋, 等. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5):453-465. doi: 10.17521/cjpe.2015.0044
[19] 张仁懿, 徐当会, 陈凌云, 等. 基于N: P化学计量特征的高寒草甸植物养分状况研究[J]. 环境科学, 2014, 35(3):1131-1137.
[20] 吴一博, 金光泽. 阔叶红松林不同演替阶段灌木器官的N、P分配特征[J]. 生态学报, 2021, 24:1-9.
[21] Compiling Group of the Vegetation of China (中国植被编写组). The Vegetation of China [M]. China Agricultural University Press, 1980: 889-916 ( in Chinese).
[22] 胡朝臣, 刘学炎, 类延宝, 等. 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征[J]. 植物生态学报, 2016, 40(11):1145-1153. doi: 10.17521/cjpe.2016.0052
[23] 卢同平, 王艳飞, 王黎明, 等. 西双版纳热带雨林土壤与叶片生态化学计量特征的干湿度效应[J]. 生态学报, 2018, 38(7):2333-2343.
[24] 李 旭, 谭钠丹, 吴 婷, 等. 增温对南亚热带常绿阔叶林4种幼树生长和碳氮磷化学计量特征的影响[J]. 生态学报, 2021, 41(15):6146-6158.
[25] 王煊妮, 张 玲. 西双版纳4种生境下的桑寄生与寄主植物多样性及分布特点[J]. 植物生态学报, 2017, 39:701-711.
[26] 朱 华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3):224-241.
[27] 李洁琼, 宋晓阳, 曹 敏. 云南哀牢山和玉龙雪山森林树种幼苗对海拔梯度的响应及其季节性差异[J]. 应用生态学报, 2016, 27(11):3403-3412.
[28] 环境保护部. 生物多样性观测技术指导-陆生维管植物(HJ710.1-2014)[S]. 中国环境科学出版社, 2015: 12-17.
[29] Zhang T L, Qiu Z J, Wu Z M, et al. Stoichiometric characteristics of carbon, nitrogen, phosphorus and potassium in organs of coniferous-broadleaved mixed forest in Northern Guangdong[J]. Forest Research, 2021, 34(2): 149-157.
[30] 马玉珠, 钟全林, 靳冰洁, 等. 中国植物根碳、氮、磷化学计量学的空间变化及其影响因子[J]. 植物生态学报, 2015, 39(2):159-166. doi: 10.17521/cjpe.2015.0015
[31] Fan Y, Pan Y L, Chen Z W, et al. C: N: P stoichiometry in roots, stems, and leaves of four mangrove species[J]. Chinese Journal of Ecology, 2019, 38(4): 1041-1048.
[32] Zhu L, Gu G J, Xu Z F, et al. Ecological stoichiometric ratio of carbon, nitrogen, and phosphorus in tree, shrub, and herb species in a subtropical evergreen broad-leaved forest[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(6): 1277-1285.
[33] Garkoti S C. Dynamics of fine root N, P and K in high elevation forests of central Himalaya[J]. Forestry Studies in China, 2012, 14(2): 145-151. doi: 10.1007/s11632-012-0203-5
[34] 黄雍容, 高 伟, 黄石德, 等. 福建三种常绿阔叶林碳氮磷生态化学计量特征[J]. 生态学报, 2021, 41(5):1991-2000.
[35] 陈晓萍, 郭炳桥, 钟全林, 等. 武夷山不同海拔黄山松根碳、氮、磷化学计量特征对土壤养分的适应[J]. 生态学报, 2018, 38(1):273-281.
[36] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006. doi: 10.1073/pnas.0403588101
[37] Suriyagoda L D B, Rajapaksha R, Pushpakumara G, et al. Nutrient resorption from senescing leaves of epiphytes, hemiparasites and their hosts in tropical forests of Sri Lanka[J]. Journal of Plant Ecology, 2018, 11(6): 815-826. doi: 10.1093/jpe/rtx049
[38] Zhang J, Wang Y, Cai C. Multielemental stoichiometry in plant organs: a case study with the alpine herb Gentiana rigescens across Southwest China[J]. Frontiers in Plant Science, 2020, 11: 441. doi: 10.3389/fpls.2020.00441
[39] Zhang K Y, Yang D, Zhang Y B, et al. Differentiation in stem and leaf traits among sympatric lianas, scandent shrubs and trees in a subalpine cold temperate forest[J]. Tree Physiology, 2021, 41(11): 1992-2003. doi: 10.1093/treephys/tpab049