[1] Acevedo M A, Beaudrot L, Meléndez-Ackerman E J, et al. Local extinction risk under climate change in a neotropical asymmetrically dispersed epiphyte[J]. Journal of Ecology, 2020, 108(4): 1553-1564. doi: 10.1111/1365-2745.13361
[2] Lenoir J, Gégout J C, Marquet P A, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320(5884): 1768-1771. doi: 10.1126/science.1156831
[3] 黄来明, 邵明安, 裴艳武, 等. 沙地濒危植物长柄扁桃生物学特性与抗逆性及应用综述[J]. 土壤, 2019, 51(2):217-223.
[4] 孙树臣, 邵明安, 翟 胜, 等. 沙地长柄扁桃研究进展[J]. 林业科技通讯, 2020, 30(4):20-26.
[5] Elith J, Graham C H. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models[J]. Ecography, 2009, 32(1): 66-77. doi: 10.1111/j.1600-0587.2008.05505.x
[6] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3-4): 231-259. doi: 10.1016/j.ecolmodel.2005.03.026
[7] Phillips S J, Miroslav D. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161-175. doi: 10.1111/j.0906-7590.2008.5203.x
[8] Saatchi S, Buermann W, Steege H, et al. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements[J]. Remote Sensing of Environment, 2008, 112(5): 2000-2017. doi: 10.1016/j.rse.2008.01.008
[9] Yi Y J, Cheng X, Yang Z F, et al. Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 748-762. doi: 10.1016/j.rser.2016.09.138
[10] Li J J, Fan G, He Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis[J]. Science of the Total Environment, 2020, 698: 134141. doi: 10.1016/j.scitotenv.2019.134141
[11] Yang X Q, Kushwaha S P S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83-87. doi: 10.1016/j.ecoleng.2012.12.004
[12] Zhang K L, Zhang Y, Zhou C, et al. Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt[J]. Ecological Informatics, 2019, 50: 62-57. doi: 10.1016/j.ecoinf.2019.01.004
[13] 王 伟, 田荣荣, 那立妍, 等. 基于MaxEnt生态软件划分澳洲坚果的潜在地理适生区[J]. 林业科学研究, 2017, 30(3):444-449.
[14] Wang W, Li Z J, Zhang Y L, et al. Current situation, global potential distribution and evolution of six almond species in China[J]. Frontiers in Plant Science, 2021, 12: 619883. doi: 10.3389/fpls.2021.619883
[15] Zhang J M, Song M L, Li Z J, et al. Effects of climate change on the distribution of Akebia quinata[J]. Frontiers in Ecology and Evolution, 2021, 9: 752682. doi: 10.3389/fevo.2021.752682
[16] Zhang J M, Peng X Y, Song M L, et al. Effects of climate change on the distribution of wild Akebia trifoliata[J]. Ecology and Evolution, 2022, 12: e8714.
[17] Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315. doi: 10.1002/joc.5086
[18] Li Y C, Li M Y, Li C, et al. Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China[J]. Forests, 2020, 11(3): 302. doi: 10.3390/f11030302
[19] Sillero N, Barbosa A M. Common mistakes in ecological niche models[J]. International Journal of Geographical Information Science, 2021, 35(2): 213-226. doi: 10.1080/13658816.2020.1798968
[20] 潘浪波, 段 伟, 黄有军. 基于MaxEnt模型预测薄壳山核桃在中国的种植区[J]. 浙江农业大学学报, 2022, 39(1):76-83.
[21] 王小军, 刘广旭, 肖 彤. 气候变化情景下油茶生长的适宜性特征[J]. 热带地理, 2020, 40(5):868-880.
[22] Zhang K L, Yao L J, Meng J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634(1): 1326-1334.
[23] Soilhi Z, Sayari N, Benalouache N, et al. Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model[J]. Ecological Informatics, 2022, 68: 101533. doi: 10.1016/j.ecoinf.2021.101533
[24] Gou Y L, Li X, Zhao Z F, et al. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling[J]. Global Ecology and Conservation, 2019, 9: e00691.
[25] Gou Y L, Li X, Zhao Z F, et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios[J]. Scientific reports, 2017, 7: 46221. doi: 10.1038/srep46221
[26] Hampe A, Petit R J. Conserving biodiversity under climate change: the rear edge matters[J]. Ecology letters, 2005, 8(5): 461-467. doi: 10.1111/j.1461-0248.2005.00739.x
[27] Ramírez-Preciado R P, Gasca-Pineda J, Arteaga M C. Effects of global warming on the potential distribution ranges of six Quercus species (Fagaceae)[J]. Flora, 2019, 251: 32-38. doi: 10.1016/j.flora.2018.12.006
[28] Thuiller W, Albert C, Araújo M B, et al. Predicting global change impacts on plant species' distributions: Future challenges[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9(3-4): 137-152. doi: 10.1016/j.ppees.2007.09.004