[1] 全 迎, 李明泽, 甄 贞, 等. 运用无人机激光雷达数据提取落叶松树冠特征因子及树冠轮廓模拟[J]. 东北林业大学学报, 2019, 47(11):52-58. doi: 10.3969/j.issn.1000-5382.2019.11.011
[2] Marshall D D, Johnson G P, Hann D W. Crown profile equations for stand-grown western hemlock trees in northwestern Oregon[J]. Canadian Journal of Forest Research, 2003, 33(11): 2059-2066. doi: 10.1139/x03-126
[3] HanY Y, Wu B G, Wang K Y, et al. Individual-tree form growth models of visualization simulation for managed Larix principis-rupprechtii plantation[J]. Comput Electronics Agric, 2016, 123: 341-350. doi: 10.1016/j.compag.2016.03.009
[4] 郭艳荣, 吴保国, 郑小贤, 等. 杉木不同龄组树冠形态模拟模型研究[J]. 北京林业大学学报, 2015, 37(2):40-47.
[5] 吴丹子, 王成德, 李 倞, 等. 福建杉木树冠外轮廓和树冠体积相容性模型[J]. 浙江农林大学学报, 2020, 37(1):114-121. doi: 10.11833/j.issn.2095-0756.2020.01.015
[6] Dong C, Wang C D, Wu B G, et al. Study on crown profile models for Chinese fir (Cunninghamia lanceolata) in Fujian Province and its visualization simulation[J]. Scandinavian Journal of Forest Research, 2016, 31(3): 302-313. doi: 10.1080/02827581.2015.1081982
[7] 高慧淋. 东北林区针叶树树冠轮廓及特征因子模拟[D]. 哈尔滨: 东北林业大学, 2017.
[8] Gao H L, Bi H Q, Li F R. Modelling conifer crown profiles as nonlinear conditional quantiles: An example with planted Korean pine in northeast China[J]. Forest Ecology and Management, 2017, 398: 101-115. doi: 10.1016/j.foreco.2017.04.044
[9] Gao H L, Dong L H, Li F R. Modeling variation in crown profile with tree status and cardinal directions for planted Larix olgensis henry trees in Northeast China[J]. Forests, 2017, 8(5): 139-163. doi: 10.3390/f8050139
[10] 卢康宁, 张怀清, 刘 闽, 等. 杉木单木生长可视化模拟系统设计与实现[J]. 林业科学研究, 2012, 25(2):207-211. doi: 10.3969/j.issn.1001-1498.2012.02.016
[11] 王小明, 卢 军, 李凤日. 北方天然次生林主要阔叶树种树冠建模及应用[J]. 南京林业大学学报: 自然科学版, 2012, 36(4):7-12.
[12] Cao L, Coops N C, Sun Y, et al. Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148: 114-129. doi: 10.1016/j.isprsjprs.2018.12.006
[13] Ferrarese J, Affleck D, Seielstad C. Conifer crown profile models from terrestrial laser scanning[J]. Silv Fennica, 2015, 49(1): 1106-1131.
[14] Balsi M, Esposito S, Fallavollita P, et al. Single-tree detection in high-density LiDAR data from UAV-based survey[J]. European Journal of Remote Sensing, 2018, 51(1): 679-692. doi: 10.1080/22797254.2018.1474722
[15] Chen C F, Wang Y F, Li Y Y, et al. Robust and parameter-free algorithm for constructing pit-free canopy height models[J]. ISPRS International Journal of Geo-Information, 2017, 6(7): 219-231. doi: 10.3390/ijgi6070219
[16] Khosravipour A, Skidmore A K, Isenburg M, et al. Generatingpit-free canopy height models from airborne lidar[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(9): 863-872.
[17] Reitberger J, Schnörr C, Krzystek P, et al. 3D segmentation of single trees exploiting full waveform LIDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6): 561-574. doi: 10.1016/j.isprsjprs.2009.04.002
[18] Kim S, McGaughey R J, Andersen H E, et al. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data[J]. Remote Sensing of Environment, 2009, 113(8): 1575-1586. doi: 10.1016/j.rse.2009.03.017
[19] Sun Y X, Gao H L, Li F R. Usinglinear mixed-effects models with quantileregression to simulate the crown profile of planted Pinus sylvestris var. mongolica trees[J]. Forests, 2017, 8(11): 446-463. doi: 10.3390/f8110446
[20] Wallace L, Lucieer A, Watson C S. Evaluatingtree detection and segmentation routines on very high resolution UAV LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7619-7628. doi: 10.1109/TGRS.2014.2315649