[1] Kurepin L V, Emery R J, Pharis R P, et al. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth[J]. Journal of Experimental Botany, 2007, 58(8): 2145-57. doi: 10.1093/jxb/erm068
[2] Montgomery R A, Chazdon R L. Forest structure, canopy architecture, and light transmittance in tropical wet forests[J]. Global Ecology & Biogeography, 2001, 82(10): 2707-2718.
[3] Mejia-Dominguez N R, Meave J A, Diaz-Avalos C. Spatial structure of the abiotic environment and its association with sapling community structure and dynamics in a cloud forest[J]. International Journal of Biometeorology, 2012, 56(2): 305-18. doi: 10.1007/s00484-011-0434-5
[4] 郑 芬, 李兆佳, 邱治军, 等. 广东南岭天然常绿阔叶林林下光环境对林下幼树功能性状的影响[J]. 生态学报, 2020, 40(13):4516-4527.
[5] Terfa M T, Solhaug K A, Gislerod H R, et al. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa x hybrida but does not affect time to flower opening[J]. Physiologia Plantarum, 2013, 148(1): 146-59. doi: 10.1111/j.1399-3054.2012.01698.x
[6] Sevillano I, Short I, Grant J, et al. Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings[J]. Forest Ecology and Management, 2016, 374: 11-19. doi: 10.1016/j.foreco.2016.04.048
[7] 贺顺钦, 王发其. 辽东栎苗木早期生长与光的关系[J]. 林业科学研究, 2001, 14(6):697-700. doi: 10.3321/j.issn:1001-1498.2001.06.018
[8] Wei H, Hauer R J, Chen G, et al. Growth, nutrient assimilation, and carbohydrate metabolism in Korean pine (Pinus koraiensis) seedlings in response to light spectra[J]. Forests, 2019, 11(1).
[9] Tylewicz S, Petterle A, Marttila S. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication[J]. Science, 2018, 360(6385): 212-215. doi: 10.1126/science.aan8576
[10] Navidad H, Fløistad I S, Olsen J E, et al. Subalpine fir (Abies laciocarpa) and Norway spruce (Picea abies) seedlings show different growth responses to blue light[J]. Agronomy, 2020, 10(5): 712. doi: 10.3390/agronomy10050712
[11] Bauerle W L, Oren R, Way D A, et al. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22): 8612-8617. doi: 10.1073/pnas.1119131109
[12] Kurepin L V, Shah S, Reid D M. Light quality regulation of endogenous levels of auxin, abscisic acid and ethylene production in petioles and leaves of wild type and ACC deaminase transgenic Brassica napus seedlings[J]. Plant Growth Regulation, 2007, 52(1): 53-60. doi: 10.1007/s10725-007-9176-0
[13] Li W, Liu S-W, Ma J-J, et al. Gibberellin signaling is required for far-red light-induced shoot elongation in Pinus tabuliformis seedlings[J]. Plant Physiology, 2020, 182(1): 658-668. doi: 10.1104/pp.19.00954
[14] Kurepin L V, Walton L J, Hayward A, et al. Interactions between plant hormones and light quality signaling in regulating the shoot growth of Arabidopsis thaliana seedlings[J]. Botany, 2012, 90(3): 237-246. doi: 10.1139/b11-108
[15] Tao Y, Ferrer J L, Ljung K, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants[J]. Cell, 2008, 133(1): 164-76. doi: 10.1016/j.cell.2008.01.049
[16] 王庆燕. 不同群体结构下玉米避阴反应的生理生化机制及其调控研究[D]. 北京: 中国农业大学, 2015.
[17] Zheng L, Van Labeke M C. Long-Term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants[J]. Front Plant Sci, 2017, 8: 917. doi: 10.3389/fpls.2017.00917
[18] Centofante A R. Light quality on the morphoanatomy and physiology of Campomanesia pubescens (DC. ) O. Berg. seedlings[J]. Scientia Horticulturae, 2020: 259.
[19] Ma X F, Hall D, Onge K R, et al. Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway[J]. Genetics, 2010, 186(3): 1033-44. doi: 10.1534/genetics.110.120873
[20] Franklin K A. Light and temperature signal crosstalk in plant development[J]. Curr Opin Plant Biol, 2009, 12(1): 63-68. doi: 10.1016/j.pbi.2008.09.007
[21] Chiang C, Hoch D B G. Reaching natural growth light quality effects on plant performance in indoor growth facilities[J]. Plants (Basel, Switzerland), 2020, 9(10): 1312.
[22] 国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019.
[23] 厉月桥, 李迎超, 吴志庄. 中国北方栎属植物资源调查与区划[J]. 林业资源管理, 2013(4):88-93. doi: 10.3969/j.issn.1002-6622.2013.04.017
[24] 郑金萍, 杨学东, 郭忠玲, 等. 蒙古栎林天然更新状况及影响因素研究[J]. 北华大学学报: 自然科学版, 2015, 16(5):652-658.
[25] Lupke B V. Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species[J]. Forest Ecology and Management, 1998, 106: 19-26. doi: 10.1016/S0378-1127(97)00235-1
[26] 姜玲玲, 许中旗. 东北东部山地蒙古栎林的年龄结构及天然更新研究[J]. 林业与生态科学, 2020, 35(4):365-376.
[27] 王 巍, 李庆康, 马克平. 东灵山地区辽东栎幼苗的建立和空间分布[J]. 植物生态学报, 2000, 24(5):595-600. doi: 10.3321/j.issn:1005-264X.2000.05.014
[28] 于世川, 张建国, 叶权平, 等. 抚育间伐对黄龙山辽东栎林分质量的影响[J]. 西北林学院学报, 2018, 33(3):52-60. doi: 10.3969/j.issn.1001-7461.2018.03.09
[29] 李迎超, 厉月桥, 王利兵, 等. 木本淀粉能源植物栓皮栎与麻栎的资源调查以及分布规律[J]. 林业资源管理, 2013(2):94-101. doi: 10.3969/j.issn.1002-6622.2013.02.018
[30] Ballare, C L, Scopel, A L, Sanchez, R A. Far-red radiation reflected from adjacent leaves- an early signal of competition in plant canopies.[J]. Science, 1990, 247(4940): 329-332. doi: 10.1126/science.247.4940.329
[31] Smith H. Phytochromes and light signal perception by plants—an emerging synthesis[J]. Nature, 2000, 407(6804): 585-591. doi: 10.1038/35036500
[32] Kohyama T, Hotta M. Significance of allometry in tropical saplings.[J]. Functional Ecology, 1990, 4(4): 515-521. doi: 10.2307/2389319
[33] J. Strasser R, Alakasrivastava, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochemistry and Photobiology, 1995, 61(1): 32-42. doi: 10.1111/j.1751-1097.1995.tb09240.x
[34] Dong W, Zhang Y, Zhang Y, et al. Short-day Photoperiod effects on plant growth, flower bud differentiation, and yield formation in Adzuki Bean (Vigna angularis)[J]. International Journal of Agriculture and Biology, 2016, 18(2): 337-345. doi: 10.17957/IJAB/15.0091
[35] Hendriks J H, Kolbe A, Gibon Y, et al. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species[J]. Plant Physiology, 2003, 133(2): 838-49. doi: 10.1104/pp.103.024513
[36] Wei H, Ren J, Zhou J. Effect of exponential fertilization on growth and nutritional status in Buddhist pine [Podocarpus macrophyllus(Thunb. ) D. Don] seedlings cultured in natural and prolonged photoperiods[J]. Soil Science and Plant Nutrition, 2013, 59(6): 933-941. doi: 10.1080/00380768.2013.864957
[37] 朱开元, 刘慧春, 周江华, 等. 延长光周期对罗汉松和鸡爪槭苗期生长及养分吸收利用的影响[J]. 浙江大学学报: 农业与生命科学版, 2016, 42(2):190-198.
[38] 郑维娜, 王孝安, 郭 华, 等. 微生境对辽东栎幼苗生长的影响[J]. 干旱区研究, 2013, 30(6):1049-1055.
[39] Sessa G, Carabelli M, Possenti M, et al. Multiple pathways in the control of the shade avoidance response[J]. Plants (Basel), 2018, 7(4): 102.
[40] Ammer C. Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation[J]. Annals of Forest Science, 2003, 60(2): 163-171. doi: 10.1051/forest:2003009
[41] Casal J J. Photoreceptor signaling networks in plant responses to shade[J]. Annual Review of Plant Biology, 2013, 64: 403-27. doi: 10.1146/annurev-arplant-050312-120221
[42] Hussain S, Iqbal N, Rahman T, et al. Shade effect on carbohydrates dynamics and stem strength of soybean genotypes[J]. Environmental and Experimental Botany, 2019, 162: 374-382. doi: 10.1016/j.envexpbot.2019.03.011
[43] Stirbet A, Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology B-Biology, 2011, 104(1-2): 236-57. doi: 10.1016/j.jphotobiol.2010.12.010
[44] 张璐颖, 文 笑, 林勇明, 等. 盐胁迫对台湾桤木幼苗光合作用和荧光特性的影响[J]. 福建林学院学报, 2013, 33(3):193-199. doi: 10.3969/j.issn.1001-389X.2013.03.001
[45] 李鹏民. 快速叶绿素荧光诱导动力学在植物逆境生理研究中的应用[D]. 泰安: 山东农业大学, 2007.
[46] 李英浩, 刘景辉, 赵宝平, 等. 干旱胁迫对燕麦生长及叶片光系统Ⅱ活性的影响[J]. 西北植物学报, 2020, 40(10):1706-1713.
[47] Zhang H, Zhong H, Wang J, et al. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius "Diabolo"[J]. Peer J, 2016, 4: e2125. doi: 10.7717/peerj.2125
[48] Haldimann P, Strasser R J. Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L. )[J]. Photosynthesis Research, 1999, 62(1): 67-83. doi: 10.1023/A:1006321126009
[49] 李冬梅, 谭秋平, 高东升, 等. 光周期对休眠诱导期桃树光合及PSII光系统性能的影响J]. 应用生态学报, 2014, 25(7):1933-1939.
[50] 刘 杰, 胡笑涛, 王文娥, 等. 光强和光周期对水培生菜光合及叶绿素荧光特性的影响[J]. 西南农业学报, 2019, 032(8):1784-1790.
[51] 滕志远, 张会慧, 代 欣, 等. 干旱对桑树叶片光系统II活性的影响[J]. 浙江农业学报, 2016, 28(1):1-8. doi: 10.3969/j.issn.1004-1524.2016.01.01
[52] 王小菲, 高文强, 刘建锋, 等. 不同生境对栓皮栎幼苗光合生理特性的影响[J]. 生态学报, 2016, 36(24):8062-8070.