[1] 王 林, 代永欣, 郭晋平, 等. 刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用[J]. 林业科学, 2016, 52(6):1-9.
[2] 王 谦, 刘琳奇, 王佩舒, 等. 静风下土壤水分胁迫的栓皮栎幼苗气候空间上限列线[J]. 中国水土保持科学, 2017, 15(6):73-80.
[3] 刘娟娟, 李吉跃, 张建国. 干旱胁迫对油松和侧柏水分运输安全性和有效性的影响[J]. 生态学报, 2010, 30(9):2507-2514.
[4] 靳 欣, 徐 洁, 白坤栋, 等. 从水力结构比较3种共存木本植物的抗旱策略[J]. 北京林业大学学报, 2011, 33(6):135-141.
[5] 代永欣. 干旱、低温等逆境条件下不同树种的水分平衡-碳代谢关系[D]. 北京: 中国林业科学研究院, 2017.
[6] 贾汉森, 高 峻, 张劲松, 等. 太行山南麓不同径级栓皮栎生长对气候要素及干旱事件的响应[J]. 应用生态学报, 2021, 32(8):2857-2865.
[7] Yin X H, Sterck F, Hao G Y. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation[J]. New Phytologist, 2018, 219(2): 530-541. doi: 10.1111/nph.15170
[8] Sande M T V D, Poorter L, Schnitzer S A, et al. The hydraulic efficiency-safety trade-off differs between lianas and trees[J]. Ecology, 2019, 100(5): e02666.
[9] Christman M A, Sperry J, Smith D. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species[J]. New Phytologist, 2012, 193(3): 713-720. doi: 10.1111/j.1469-8137.2011.03984.x
[10] Venturas M D, Sperry J S, Hacke U G. Plant xylem hydraulics: What we understand, current research, and future challenges[J]. Journal of Integrative Plant Biology, 2017, 59(6): 356-389. doi: 10.1111/jipb.12534
[11] Pittermann J, Sperry J S, Hacke U G, et al. Torus-margo pits help conifers compete with angiosperms[J]. Science, 2005, 310(5756): 1924-1924. doi: 10.1126/science.1120479
[12] Wheeler J K, Sperry J S, Hacke U G, et al. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport[J]. Plant, Cell & Environment, 2005, 28(6): 800-812.
[13] Delzon S, Douthe C, Sala A, et al. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding[J]. Plant, Cell & Environment, 2010, 33(12): 2101-2111.
[14] Li S, Lens F, Espino S, et al. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem[J]. Iawa Journal, 2016, 37(2): 152-171. doi: 10.1163/22941932-20160128
[15] Jacobsen A L. Diversity in conduit and pit structure among extant gymnosperm taxa[J]. American Journal of Botany, 2021, 108(4): 559-570. doi: 10.1002/ajb2.1641
[16] 王 林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响[J]. 植物生态学报, 2013, 37(3):248-255.
[17] 赵 勇, 陈 桢, 樊 巍, 等. 太行山低山丘陵区7种典型植物水分利用特征[J]. 中国水土保持科学, 2013, 8(5):61-66.
[18] Sperry J S, Donnelly J R, Tyree M T. A method for measuring hydraulic conductivity and embolism in xylem[J]. Plant, Cell & Environment, 1988, 11(1): 35-40.
[19] McCulloh K A, Johnson D M, Meinzer F C, et al. The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species[J]. Plant, Cell & Environment, 2014, 37(5): 1171-1183.
[20] Sperry J S, Nichols K L, Sullivan J E, et al. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern utah and interior Alaska[J]. Ecology, 1994, 75(6): 1736-1752. doi: 10.2307/1939633
[21] Hacke U G, Sperry J S. Functional and ecological xylem anatomy[J]. Perspectives in plant ecology, evolution and systematics, 2001, 4(2): 97-115. doi: 10.1078/1433-8319-00017
[22] Gleason S M, Westoby M, Jansen S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species[J]. New Phytologist, 2016, 209(1): 123-136. doi: 10.1111/nph.13646
[23] Santiago L S, De Guzman M E, Baraloto C, et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species[J]. New Phytologist, 2018, 218(3): 1015-1024. doi: 10.1111/nph.15058
[24] Levionnois S, Jansen S, Wandji R T, et al. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees[J]. New Phytologist, 2021, 229(3): 1453-1466. doi: 10.1111/nph.16942
[25] Cai J, Tyree M T. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx[J]. Plant, Cell & Environment, 2010, 33(7): 1059-1069.
[26] Lemaire C, Quilichini Y, Brunel-Michac N, et al. Plasticity of the xylem vulnerability to embolism in Populus tremula x alba relies on pit quantity properties rather than on pit structure[J]. Tree Physiology, 2021, 41(8): 1384-1399. doi: 10.1093/treephys/tpab018
[27] Scholz A, Rabaey D, Stein A, et al. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species[J]. Tree Physiology, 2013, 33(7): 684-694. doi: 10.1093/treephys/tpt050
[28] Zimmennann M H. Xylem structure and the ascent of sap[M]. Berlin: Springer-Verlag, 1983.
[29] Medeiros J S, Lens F, Maherali H, et al. Vestured pits and scalariform perforation plate morphology modify the relationships between angiosperm vessel diameter, climate and maximum plant height[J]. New Phytologist, 2019, 221(4): 1802-1813. doi: 10.1111/nph.15536
[30] Watanabe Y, Sano Y, Asada T, et al. Histochemical Study of the Chemical Composition of Vestured Pits in two Species of Eucalyptus[J]. IAWA Journal, 2006, 27(1): 33-43. doi: 10.1163/22941932-90000135
[31] Pereira L, Domingues A P, Jansen S, et al. Is embolism resistance in plant xylem associated with quantity and characteristics of lignin?[J]. Trees, 2018, 32(2): 349-358.
[32] Schulte P J, Hacke U G. Solid mechanics of the torus-margo in conifer intertracheid bordered pits[J]. New Phytologist, 2021, 229(3): 1431-1439. doi: 10.1111/nph.16949
[33] Liu X, Liu H, Gleason S M, et al. Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species[J]. Tree Physiology, 2019, 39(10): 1665-1674. doi: 10.1093/treephys/tpz076
[34] Lopez O R, Kursar T A, Cochard H, et al. Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species[J]. Tree Physiology, 2005, 25(12): 1553-1562. doi: 10.1093/treephys/25.12.1553
[35] Liu Y Y, Song J, Wang M, et al. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species[J]. Tree Physiology, 2015, 35(12): 1333-1342. doi: 10.1093/treephys/tpv061
[36] 罗丹丹, 王传宽, 金 鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9):1020-1032. doi: 10.17521/cjpe.2016.0366
[37] 金 鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报, 2015, 39(10):1021-1032. doi: 10.17521/cjpe.2015.0099
[38] Yan W, Zhong Y, Shangguan Z. Rapid response of the carbon balance strategy in Robinia pseudoacacia and Amorpha fruticosa to recurrent drought[J]. Environmental and Experimental Botany, 2017, 138: 46-56. doi: 10.1016/j.envexpbot.2017.03.009
[39] Gallé A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery[J]. New Phytologist, 2007, 174(4): 799-810. doi: 10.1111/j.1469-8137.2007.02047.x