[1] Si L L, Chen Y C, Han X J, et al. Chemical composition of essential oils of Litsea cubeba harvested from its distribution areas in China[J]. Molecules, 2012, 17(6): 7057-7066. doi: 10.3390/molecules17067057
[2] Gao M, Lin L Y, Chen Y C, et al. Digital gene expression profiling to explore differentially expressed genes associated with terpenoid biosynthesis during fruit development in Litsea cubeba[J]. Molecules, 2016, 21(9): 1251-1267. doi: 10.3390/molecules21091251
[3] 张爱华, 唐春艳, 胡 楠, 等. 我国山苍子产业发展现状及对策[J]. 生物质化学工程, 2020, 54(6):25-32. doi: 10.3969/j.issn.1673-5854.2020.06.005
[4] Chen Y C, Li Z, Zhao Y X, et al. The Litsea genome and the evolution of the laurel family[J]. Nature Communications, 2020, 11(1): 1-14. doi: 10.1038/s41467-019-13993-7
[5] Zhao Y, Chen Y, Gao M, et al. Overexpression of geranyl diphosphate synthase small subunit 1 (LcGPPS. SSU1) enhances the monoterpene content and biomass[J]. Industrial Crops and Products, 2020, 143: 111926. doi: 10.1016/j.indcrop.2019.111926
[6] 徐 麟, 吴 双. 植物再生的理论发展和应用革新[J]. 植物生理学报, 2020, 56(8):1651-1652. doi: 10.13592/j.cnki.ppj.2020.1001
[7] 王栋鑫, 彭 棣, 张 爽. 农杆菌介导木本植物遗传转化的研究进展[J]. 北方园艺, 2018(2):181-185. doi: 10.11937/bfyy.20173329
[8] Sugimoto K, Temman H, Kadokura S, et al. To regenerate or not to regenerate: factors that drive plant regeneration[J]. Current Opinion in Plant Biology, 2019, 47: 138-150. doi: 10.1016/j.pbi.2018.12.002
[9] Bidabadi S S, Jain S M. Cellular, molecular, and physiological aspects of in vitro plant regeneration[J]. Plants, 2020, 9(6): 702. doi: 10.3390/plants9060702
[10] 赵佐敏. 影响山苍子离体快繁效果的主要因素研究[J]. 安徽农业科学, 2005, 33(9):1650-1652. doi: 10.3969/j.issn.0517-6611.2005.09.054
[11] 周传明, 吕曼芳, 陈 奎, 等. 山苍子继代培养中芽增殖效果研究[J]. 广西科学, 2012, 19(4):374-376. doi: 10.3969/j.issn.1005-9164.2012.04.021
[12] 赵 军, 傅体华. 山苍子组织培养快繁试验[J]. 农村经济与科技, 2021, 32(20):31-33. doi: 10.3969/j.issn.1007-7103.2021.20.012
[13] 张付豪, 李佳洛, 王 阳, 等. 山苍子春梢和秋梢带芽茎段最适消毒方法的筛选[J]. 经济林研究, 2019, 37(4):204-209. doi: 10.14067/j.cnki.1003-8981.2019.04.028
[14] Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology[J]. Current Opinion in Biotechnology, 2006, 17(2): 147-154. doi: 10.1016/j.copbio.2006.01.009
[15] Gelvin S B. Plant proteins involved in Agrobacterium-mediated genetic transformation[J]. Annual Review of Phytopathology, 2010, 48: 45-68. doi: 10.1146/annurev-phyto-080508-081852
[16] Matveeva T V, Otten L. Widespread occurrence of natural genetic transformation of plants by Agrobacterium[J]. Plant Molecular Biology, 2019, 101(4): 415-437.
[17] Niazian M, Sadat-Noori S A, Tohidfar M, et al. Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant[J]. Industrial Crops and Products, 2019, 132: 29-40. doi: 10.1016/j.indcrop.2019.02.005
[18] Bakhsh A. Development of efficient, reproducible and stable Agrobacterium-mediated genetic transformation of five potato cultivars[J]. Food Technology and Biotechnology, 2020, 58(1): 57-63. doi: 10.17113/ftb.58.01.20.6187
[19] Sood P, Singh R K, Prasad M. An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.)[J]. Plant Cell Reports, 2020, 39(4): 511-525. doi: 10.1007/s00299-019-02507-w
[20] Tiwari N N, Singh R K, Singh S P. Impact of cefotaxime on Agrobacterium mediated BT gene transformation in sugarcane[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(2): 3952-3955.
[21] Kumar R, Mamrutha H M, Kaur A, et al. Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium overgrowth in wheat (Triticum aestivum L.) transformation[J]. Asian Journal of Microbiol Biotechnology Environment Science, 2017, 19(4): 961-967.
[22] Nai Y S, Lee M R, Kim S, et al. Relationship between expression level of hygromycin B-resistant gene and Agrobacterium tumefaciens-mediated transformation efficiency in Beauveria bassiana JEF-007[J]. Journal of Applied Microbiology, 2017, 123(3): 724-731. doi: 10.1111/jam.13529
[23] Ortiz J P A, Reggiardo M I, Ravizzini R A, et al. Hygromycin resistance as an efficient selectable marker for wheat stable transformation[J]. Plant Cell Reports, 1996, 15(12): 877-881. doi: 10.1007/BF00231579
[24] 林丽媛, 韩小娇, 陈益存, 等. 山鸡椒的愈伤组织诱导及植株再生[J]. 植物生理学报, 2013, 49(10):1047-1052. doi: 10.13592/j.cnki.ppj.2013.10.006
[25] Kim M J, An D J, Moon K B, et al. Highly efficient plant regeneration and Agrobacterium-mediated transformation of Helianthus tuberosus L[J]. Industrial Crops and Products, 2016, 83: 670-679. doi: 10.1016/j.indcrop.2015.12.054
[26] Ikeuchi M, Ogawa Y, Iwase A, et al. Plant regeneration: cellular origins and molecular mechanisms[J]. Development, 2016, 143(9): 1442-1451. doi: 10.1242/dev.134668
[27] Lee K, Seo P J. Dynamic epigenetic changes during plant regeneration[J]. Trends in Plant Science, 2018, 23(3): 235-247. doi: 10.1016/j.tplants.2017.11.009
[28] Qiu Y, Guan S C, Wen C, et al. Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner[J]. BMC Plant Biology, 2019, 19(1): 1-16. doi: 10.1186/s12870-018-1600-2
[29] Su Y H, Liu Y B, Zhang X S. Auxin–cytokinin interaction regulates meristem development[J]. Molecular Plant, 2011, 4(4): 616-625. doi: 10.1093/mp/ssr007
[30] Cheng Z J, Zhu S S, Gao X Q, et al. Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis[J]. Plant Cell Reports, 2010, 29(8): 927-933. doi: 10.1007/s00299-010-0879-8
[31] Ahmad N, Faisal M. Thidiazuron: from urea derivative to plant growth regulator[M]. Singapore: Springer Singapore, 2018: 61-94.
[32] 许智宏, 张宪省, 苏英华, 等. 植物细胞全能性和再生[J]. 中国科学:生命科学, 2019, 49(10):1282-1300.
[33] Mao C, He J, Liu L, et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal, 2020, 18(2): 429-442. doi: 10.1111/pbi.13209
[34] Liu J, Moore S, Chen C, et al. Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: from experiments to systems modeling, and back again[J]. Molecular Plant, 2017, 10(12): 1480-1496. doi: 10.1016/j.molp.2017.11.002
[35] Neogy A, Singh Z, Mushahary K K K, et al. Dynamic cytokinin signaling and function of auxin in cytokinin responsive domains during rice crown root development[J]. Plant Cell Reports, 2021, 40(8): 1367-1375. doi: 10.1007/s00299-020-02618-9
[36] 文明玲, 徐 茜, 黎 华, 等. 山苍子组培快繁关键技术研究[J]. 陕西农业科学, 2012, 58(3):51-53. doi: 10.3969/j.issn.0488-5368.2012.03.018
[37] 吴幼媚, 蔡 玲, 黄金使, 等. 山苍子组培继代芽瓶外生根技术研究[J]. 广西林业科学, 2011, 40(3):169-172. doi: 10.3969/j.issn.1006-1126.2011.03.003
[38] Gambhir G, Kumar P, Srivastava D K. Effect of antibiotic sensitivity on different cultured tissues and its significance in genetic transformation of cabbage Brassica oleracea[J]. Bioscience Biotechnology Research Communications, 2017, 10(4): 652-661. doi: 10.21786/bbrc/10.4/7
[39] Parmar N, Thakur A K, Kanwar K. Standardization of Agrobacterium tumefaciens-mediated genetic transformation protocol in Punica granatum L. cv. Kandhari Kabuli[J]. Crop Research, 2017, 52(6): 268-276. doi: 10.5958/2454-1761.2017.00028.6
[40] Tsuboyama S, Kodama Y. AgarTrap protocols on your benchtop: Simple methods for Agrobacterium-mediated genetic transformation of the liverwort Marchantia polymorpha[J]. Plant Biotechnology, 2018, 35(2): 93-99. doi: 10.5511/plantbiotechnology.18.0312b
[41] 王 坚, 李永玲, 刘 炜. 潮霉素B在遗传转化中应用的研究进展[J]. 宁夏农林科技, 2017, 58(12):36-43. doi: 10.3969/j.issn.1002-204X.2017.12.013
[42] 陈 兰, 朱 晨, 李小桢, 等. 茶树遗传转化体系研究进展[J]. 安徽农业科学, 2019, 47(12):14-18. doi: 10.3969/j.issn.0517-6611.2019.12.004
[43] Van Eck J. The status of Setaria viridis transformation: Agrobacterium-mediated to floral dip[J]. Frontiers in Plant Science, 2018, 9: 652. doi: 10.3389/fpls.2018.00652
[44] Liu H, Zhao H, Wu L, et al. A genetic transformation method for cadmium hyperaccumulator Sedum plumbizincicola and non-hyperaccumulating ecotype of Sedum alfredii[J]. Frontiers in Plant Science, 2017, 8: 1047. doi: 10.3389/fpls.2017.01047
[45] 代 军. Southern杂交技术在农作物遗传转化研究中的应用[J]. 安徽农业科学, 2015, 43(1):20-23. doi: 10.3969/j.issn.0517-6611.2015.01.006