[1] 张 楠. 干旱及外施氮素对长春花生长及次生代谢的影响[D]. 重庆: 西南大学, 2012.
[2] 王新磊, 吕新芳. 氮代谢参与植物逆境抵抗的作用机理研究进展[J]. 广西植物, 2020, 40(4):583-591. doi: 10.11931/guihaia.gxzw201901007
[3] 李 静, 张冰玉, 苏晓华, 等. 植物中的铵根及硝酸根转运蛋白研究进展[J]. 南京林业大学学报(自然科学版), 2012, 36(4):137-143.
[4] 吕新芳, 于 培, 邓文浩, 等. 大叶藻基因组铵根转运蛋白AMT的生物信息学特征[J]. 基因组学与应用生物学, 2018, 37(10):4478-4485.
[5] 丛 郁, 杨顺瑛, 宋志忠, 等. 杜梨铵转运蛋白基因的克隆表达及在梨属植物中的SNP分析[J]. 西北植物学报, 2011, 31(10):1942-1950.
[6] HAO D L, ZHOU J Y, YANG S Y, et al. Function and regulation of ammonium transporters in plants[J]. International Journal of Molecular Sciences, 2020, 21(10): 35-57.
[7] ZHAO X P, YE X Z, SHI W M. Expression of OsAMT1 (1.1-1.3) in rice varieties differing in nitrogen accumulation[J]. Russian Journal of Plant Physiology, 2014, 61(5): 750-756.
[8] SIMON-ROSIN U, WOOD C, UDVARDI M K. Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus[J]. Plant Molecular Biology, 2003, 51(1): 99-108. doi: 10.1023/A:1020710222298
[9] GEMMA C, MIGUEL C, EDUARDO P M, et al. Ammonium transport and CitAMT1 expression are regulated by N in Citrus plants[J]. Planta, 2009, 229(2): 331-342. doi: 10.1007/s00425-008-0833-y
[10] SUN Y C, SHENG S, FAN T F, et al. Molecular identification and functional characterization of GhAMT1.3 in ammonium transport with a high affinity from cotton (Gossypium hirsutum L.)[J]. Physiologia Plantarum, 2019, 167(2): 217-231. doi: 10.1111/ppl.12882
[11] GAZZARRINI, LEJAY, GOJON, et al. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots[J]. The Plant cell, 1999, 11(5): 937-947. doi: 10.1105/tpc.11.5.937
[12] WALTERS M B, WILLIS J L, GOTTSCHALK K W. Seedling growth responses to light and mineral N form are predicted by species ecologies and can help explain tree diversity[J]. NRC Research Press, 2014, 44(11): 1356-1368.
[13] 马学发, 孙志虎, 刘 彤, 等. 不同形态氮素比例对白桦幼苗生长影响的研究[J]. 森林工程, 2017, 33(2):1-4. doi: 10.3969/j.issn.1006-8023.2017.02.002
[14] 李海霞, 张妍妍, 白 卉, 等. 供氮水平对白桦幼苗生物量、碳氮含量与储量的影响[J]. 江苏农业科学, 2017, 45(22):156-159.
[15] CHEN S, WANG Y C, YU L L, et al. Genome sequence and evolution of Betula platyphylla[J]. Horticulture research, 2021, 8(1): 496-507.
[16] 孟 森. 林木细根氮素吸收动态及氮转运蛋白基因表达[D]. 杨凌: 西北农林科技大学, 2016.
[17] YUAN L, LOQUÉ D, KOJIMA S, et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters[J]. The Plant Cell Online, 2007, 19(8): 2636-2652.
[18] 张 洁, 叶 玲, 郭永正, 等. 谷子AMT基因家族的鉴定及生物信息学分析[J]. 山西农业科学, 2020, 48(3):283-290.
[19] 李红梅, 韩国民. 玉米自交系B73铵转运蛋白基因家族分析[J]. 安庆师范大学学报(自然科学版), 2018, 24(1):73-77.
[20] WU Z, GAO X, ZHANG N, et al. Genome-wide identification and transcriptional analysis of ammonium transporters in Saccharum[J]. Genomics, 2021, 113(4): 1671-1680. doi: 10.1016/j.ygeno.2021.04.001
[21] 丛 郁, 杨顺瑛, 宋志忠, 等. 葡萄AMT基因家族生物信息学分析[J]. 中国农学通报, 2011, 27(25):193-199.
[22] 李 畅. 水稻铵转运蛋白基因OsAMT1.1OsAMT2.1生物学功能分析[D]. 南京: 南京农业大学, 2016.
[23] FRANCESCA S, ANNE M, ANNA R, et al. Functional characterization of an ammonium transporter gene from Lotus japonicus[J]. Gene, 2001, 270(1): 237-243.
[24] 李 赢, 王 爽, 万 华, 等. 大麦AMT1基因家族的全基因组分析[J]. 分子植物育种, 2019, 17(11):3461-3467.
[25] WU X, YANG H, QU C, et al. Sequence and expression analysis of the AMT gene family in poplar[J]. Frontiers in Plant Science, 2015, 6(1): 337-346.
[26] YUAN L, GRAFF L, LOQUÉ D, et al. AtAMT1.4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis[J]. Plant & Cell Physiology, 2009, 50(1): 13-25.
[27] 钟丽华. 铵态氮调控菜心氮素吸收的分子机制[D]. 广州: 华南农业大学, 2016.
[28] GUO H, WANG N, MCDONALD T R, et al. MpAMT1.2 from Marchantia polymorpha is a high-affinity, plasma membrane ammonium transporter[J]. Plant & Cell Physiology, 2018, 59(5): 5-13.
[29] IJATO T, PORRAS-MURILLO R, GANZ P, et al. Concentration dependent physiological and transcriptional adaptations of wheat seedlings to ammonium[J]. Physiologia Plantarum, 2021, 171(3): 328-342. doi: 10.1111/ppl.13113
[30] 李良勇, 崔国贤. 营养胁迫下植物内源激素变化研究进展[J]. 作物研究, 2002(S1):240-244.
[31] LI H, HAN J L, CHANG Y H, et al. Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia)[J]. Journal of Plant Research, 2016, 129(4): 737-748. doi: 10.1007/s10265-016-0799-y
[32] 李 真, 袁婷婷, 朱成磊, 等. 毛竹铵态氮转运蛋白的分子特征及基因表达模式[J]. 林业科学, 2021, 57(7):70-79. doi: 10.11707/j.1001-7488.20210708
[33] HUANG L, LI M, ZHOU K, et al. Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia[J]. Plant Physiology and Biochemistry, 2018, 127(1): 185-193.
[34] DUAN Y, ZHU X, SHEN J, et al. Genome-wide identification, characterization and expression analysis of the amino acid permease gene family in tea plants (Camellia sinensis)[J]. Genomics, 2020, 112(4): 2866-2874. doi: 10.1016/j.ygeno.2020.03.026