[1] Vert G, Jaillais Y. Brassinosteroid signaling and BRI1 dynamics went underground[J]. Current Opinion in Plant Biology, 2016, 33: 92-100. doi: 10.1016/j.pbi.2016.06.014
[2] 郑 洁, 王 磊. 油菜素内酯在植物生长发育中的作用机制研究进展[J]. 中国农业科技导报, 2014, 16(1):52-58.
[3] Li J, Wen J, Lease K A, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2): 213-22. doi: 10.1016/S0092-8674(02)00812-7
[4] Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J]. Cell, 1997, 90(5): 929-938. doi: 10.1016/S0092-8674(00)80357-8
[5] Vert G, Nemhauser J L, Geldner N, et al. Molecular mechanisms of steroid hormone signaling in plants[J]. Annual Review of Cell & Developmental Biology, 2005, 21(1): 177-201.
[6] He Z, Wang Z Y, Li J, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1[J]. Science, 2000, 288(5475): 2360-2363. doi: 10.1126/science.288.5475.2360
[7] Cañodelgado A, Yin Y, Yu C, et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis[J]. Development, 2004, 131(21): 5341-5351. doi: 10.1242/dev.01403
[8] Zhou A, Wang H, Walker J C, et al. BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling[J]. Plant Journal, 2004, 40(3): 399-409. doi: 10.1111/j.1365-313X.2004.02214.x
[9] Nie S, Huang S, Wang S, et al. Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits[J]. Frontiers in Plant Science, 2017, 8: 1386. doi: 10.3389/fpls.2017.01386
[10] Singh A, Breja P, Khurana J P, et al. Wheat Brassinosteroid-Insensitive1 (TaBRI1) interacts with members of TaSERK gene family and cause early flowering and seed yield enhancement in Arabidopsis[J]. PLoS One, 2016, 11(6): e0153273. doi: 10.1371/journal.pone.0153273
[11] 雷世康, 徐 刚. 麻疯树BRI1基因的鉴定及其在不同发育时期花蕾中的表达分析[J]. 林业科学研究, 2019, 32(5):121-129.
[12] Wu W G, Huang J K, Deng X Z. Potential land for plantation of Jatropha curcas as feedstocks for biodiesel in China[J]. Science China-Earth Sciences, 2009, 53(1): 120-127.
[13] 郭承刚, 王朝文, 李建富, 等. 麻疯树物候期和花的发育动态观察[J]. 现代农业科技, 2007(1):12-13. doi: 10.3969/j.issn.1007-5739.2007.01.006
[14] 李元元, 曹清河. 油菜素内酯参与调控植物生长发育与抗逆性的机制及其育种应用研究[J]. 中国农业科技导报, 2015, 17(2):25-32.
[15] Planas-Riverola A, Gupta A, Betegón-Putze I, et al. Brassinosteroid signaling in plant development and adaptation to stress[J]. Development, 2019, 146(5): dev151894. doi: 10.1242/dev.151894
[16] 王 喆, 王 璐, 宋旭明, 等. 植物油菜素内酯信号通路与植物免疫相关研究进展[J]. 安徽农业科学, 2019, 47(4):26-29. doi: 10.3969/j.issn.0517-6611.2019.04.006
[17] Lozano-Elena F, Cao-Delgado A I. Emerging roles of vascular brassinosteroid receptors of the BRI1-like family[J]. Current Opinion in Plant Biology, 2019, 51: 105-113. doi: 10.1016/j.pbi.2019.06.006
[18] Shiu S H, Bleecker A B. Plant receptor-like kinase gene family: diversity, function, and signaling[J]. Science's STKE:signal transduction knowledge environment, 2001, 2001(113): re22.
[19] Salazar-Henao J E, Lehner R, Betegón-Putze I, et al. BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of the Arabidopsis primary root[J]. Journal of Experimental Botany, 2016, 67(17): 4951-4961. doi: 10.1093/jxb/erw258
[20] Fàbregas N, Lozano-Elena F, Blasco-Escámez D, et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth[J]. Nature communications, 2018, 9(1): 4680. doi: 10.1038/s41467-018-06861-3
[21] Singh I, Shono M. Physiological and molecular effects of 24-Epibrassinolide, a brassinosteroid on thermotolerance of tomato[J]. Plant Growth Regulation, 2005, 47(2-3): 111-119. doi: 10.1007/s10725-005-3252-0
[22] Sotomayor C, Castro J, Velasco, Nicolás, et al. Influence of seven growth regulators on fruit set, pollen germination and pollen tube growth of almonds[J]. Journal of Agricultural Science & Technology B, 2012(9): 1051-1056.
[23] Thussagunpanit J, Jutamanee K, Chai-arree W, et al. Increasing photosynthetic effificiency and pollen germination with 24-Epibrassinolide in rice (Oryza sativa L.) under heat stress[J]. Thai Journal of Botany 4, 2012: 1135-143.
[24] Vogler F, Schmalzl C, Englhart M, et al. Brassinosteroids promote Arabidopsis pollen germination and growth[J]. Plant Reproduction, 2014, 27(3): 153-167. doi: 10.1007/s00497-014-0247-x
[25] Ye Q, Zhu W, Li L, et al. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 6100-6105. doi: 10.1073/pnas.0912333107
[26] Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem[J]. Plant Journal, 2002, 32(4): 495-508. doi: 10.1046/j.1365-313X.2002.01438.x
[27] Hewitt F R, Hough T, O’ Neill P, et al. Effect of brassinolide and other growth regulators on the germination and growth of pollen tubes of Prunus avium using a multiple hangingdrop assay[J]. Plant Physiology, 1985, 1: 201-211.
[28] Kim T W, Hwang J Y, Kim Y S, et al. Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis[J]. The Plant Cell, 2005, 17(8): 2397-2412. doi: 10.1105/tpc.105.033738