[1] 于 健, 陈佳佳, 孟盛旺, 等. 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应[J]. 应用生态学报, 2021, 32(1):46-56.
[2] 赵学鹏, 白学平, 李俊霞, 等. 气候变暖背景下不同海拔长白落叶松对气候变化的响应[J]. 生态学杂志, 2019, 38(3):637-647.
[3] 白孟鑫, 郑景云, 郝志新, 等. 20世纪以来美国树木生长响应气候变化敏感度的时空差异[J]. 地理研究, 2019, 38(4):822-830. doi: 10.11821/dlyj020180049
[4] Dávid M, Katalin N. Growth response of Scots pine to changing climatic conditions over the last 100 years: a case study from Western Hungary[J]. Trees, 2017, 31(3): 919-928. doi: 10.1007/s00468-016-1517-z
[5] 盖学瑞, 于大炮, 王守乐, 等. 树轮-气候“分异问题”形成机制的研究进展[J]. 生态学杂志, 2017, 36(11):3273-3280.
[6] Fan Y T, Shang H M, Wu Y, et al. Tree-Ring Width and Carbon Isotope Chronologies Track Temperature, Humidity, and Baseflow in the Tianshan Mountains, Central Asia[J]. Forests, 2020, 11(12): 1308. doi: 10.3390/f11121308
[7] Gerhard W, Walter O, Barbara W, et al. Long-term trends in leaf level gas exchange mirror tree-ring derived intrinsic water-use efficiency of Pinus cembra at treeline during the last century[J]. Agricultural and Forest Meteorology, 2018, 248(248): 251-258.
[8] Wang Y, Zhang Y, Fang Q Y, et al. Long-term changes in the tree radial growth and intrinsic water-use efficiency of Chuanxi spruce (Picea likiangensis var. balfouriana) in southwestern China[J]. Journal of Geographical Sciences, 2018, 28(6): 833-844. doi: 10.1007/s11442-018-1508-7
[9] 李敏敏. 晋西黄土高原刺槐油松生产力及其与气候因子的关系[D]. 北京: 北京林业大学, 2017.
[10] 韦景树, 李宗善, 焦 磊, 等. 黄土高原羊圈沟小流域人工物种和自然物种径向生长对气候变化的响应差异[J]. 生态学报, 2018, 38(22):8040-8050.
[11] 徐 庆, 王 婷, 高德强. 碳氢氧稳定同位素在草地生态系统水循环研究中的应用[J]. 林业科学研究, 2019, 32(6):130-136.
[12] 徐 静, 郭滨德, 孙洪志. 帽儿山地区不同种源樟子松树轮对气候因子的响应[J]. 林业科学研究, 2016, 29(4):581-586. doi: 10.3969/j.issn.1001-1498.2016.04.018
[13] 曹仁杰, 尹定财, 田 昆, 等. 丽江老君山海拔上限长苞冷杉(Abies georgei)和云南铁杉(Tsuga dumosa)径向生长对气候变化的响应[J]. 生态学报, 2020, 40(17):6067-6076.
[14] 阮亚男, 萧英男, 杨立新, 等. 大连市黑松树木水分利用效率的环境响应[J]. 应用生态学报, 2017, 28(9):2849-2855.
[15] 孙守家, 李春友, 何春霞, 等. 基于树轮稳定碳同位素的张北杨树防护林退化原因解析[J]. 应用生态学报, 2017, 28(7):2119-2127.
[16] McCarroll D, Loader N J, et al. Stable isotopes in tree rings[J]. Quaternary Science Reviews, 2003, 7(23): 771-801.
[17] Farquhar G D, O'Leary MH, et al. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2): 121-137. doi: 10.1071/PP9820121
[18] Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Functional Plant Biology, 1984, 11(6): 539-552. doi: 10.1071/PP9840539
[19] Wang W Z, McDowell N G, Pennington S, et al. Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest[J]. Agricultural and Forest Meteorology, 2020, 295(5): 1-12.
[20] Vicente S, Sergio M, Beguería, et al. A multiscalar drought index sensitive to Global Warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1710. doi: 10.1175/2009JCLI2909.1
[21] 李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征[J]. 生态学报, 2021, 41(1):27-37.
[22] Aryal P C, Man K D, Gaire N P, et al. Tree-ring climate response of two Larix species from the central Nepal Himalaya[J]. Tropical Ecology, 2020, 61(2): 215-225. doi: 10.1007/s42965-020-00082-w
[23] 刘小英, 段爱国, 张建国, 等. 不同种源杉木树轮α纤维素δ13C对年气候因子的响应[J]. 林业科学研究, 2020, 33(2):9-18.
[24] 朱 娜, 陈红林, 张 群, 等. 秦岭南坡油松树轮碳稳定同位素对气候因子的响应[J]. 西北林学院学报, 2019, 34(3):21-27. doi: 10.3969/j.issn.1001-7461.2019.03.04
[25] Tian J X, Zhang Z X, Kong R, et al. Changes in water use efficiency and their relations to climate change and human activities in three forestry regions of China[J]. Theoretical and Applied Climatology, 2021, 144(6): 1297-1310.
[26] 路伟伟, 余新晓, 贾国栋, 等. 基于树轮δ13C值的北京山区油松水分利用效率[J]. 生态学报, 2017, 37(6):2093-2100.