[1] 裴 东, 鲁新政. 中国核桃种质资源[M]. 北京: 中国林业出版社, 2011.
[2] 国家林业和草原局. 中国林业统计年鉴(2020)[M]. 北京: 中国林业出版社, 2021.
[3] 马庆国, 乐佳兴, 宋晓波, 等. 新中国果树科学研究70年—核桃[J]. 果树学报, 2019, 36(10):1360-1368.
[4] Abd Ei-Moghny A M, Santosh H B, Raghavendra K P, et al. Microsatellite marker based genetic diversity analysis among cotton (Gossypium hirsutum) accessions differing for their response to drought stress[J]. Journal of Plant Biochemistry and Biotechnology, 2017, 26: 366-370. doi: 10.1007/s13562-016-0395-1
[5] Li J, Ye C. Genome-wide analysis of microsatellite and sex-linked marker identification in Gleditsia sinensis[J]. BMC Plant Biology, 2020, 20(1): 338. doi: 10.1186/s12870-020-02551-9
[6] Patil P G, Singh N V, Bohra A, et al. Comprehensive characterization and validation of chromosome-specific highly polymorphic SSR markers from Pomegranate (Punica granatum L.) cv. Tunisia genome[J]. Frontiers in Plant Science, 2021, 12: 645055. doi: 10.3389/fpls.2021.645055
[7] UPOV. Guidelines for DNA-profiling: molecular marker selection and database construction (“BMT guidelines”) [EB/OL]. https://www.upov.int/edocs/mdocs/upov/en/bmt_18/upov_inf_17_2_draft_2.pdf, 2019-10-10.
[8] Mathema V B, Nakeesathit S, White N J, et al. Genome-wide microsatellite characteristics of five human Plasmodium species, focusing on Plasmodium malariae and P. ovale curtisi[J]. Parasite, 2020, 27(7): 34.
[9] Dharajiya D T, Shah A, Galvadiya B P, et al. Genome-wide microsatellite markers in castor (Ricinus communis L. ): Identification, development, characterization, and transferability in Euphorbiaceae[J]. Industrial Crops and Products, 2020, 151: 112461. doi: 10.1016/j.indcrop.2020.112461
[10] Zhu H, Song P, Koo D H, et al. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis[J]. BMC Genomics, 2016, 17(1): 557. doi: 10.1186/s12864-016-2870-4
[11] Manee M M, Algarni A T, Alharbi S N, et al. Genome-wide characterization and analysis of microsatellite sequences in camelid species[J]. Mammal Research, 2019, 65(16): 359-373.
[12] Subramanian S, Mishra R K, Singh L, et al. Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions[J]. Genome Biology, 2003, 4(2): 1-10. doi: 10.1186/gb-2003-4-2-p1
[13] Kelkar Y D, Tyekucheva S, Chiaromonte F, et al. The genome-wide determinants of human and chimpanzee microsatellite evolution[J]. Genome Research, 2008, 18(1): 30-38. doi: 10.1101/gr.7113408
[14] Woeste K, Burns R, Rhodes O, et al. Thirty polymorphic nuclear microsatellite loci from black walnut[J]. Journal of Heredity, 2002, 93(1): 58-60. doi: 10.1093/jhered/93.1.58
[15] Wang H, Pan G, Ma Q G, et al. The genetic diversity and introgression of Juglans regia and J. sigillata in Tibet as revealed by SSR markers[J]. Tree Genetics & Genomes, 2015, 11(1): 804.
[16] Zhang R, Zhu A, Wang X, et al. Development of Juglans regia SSR markers by data mining of the EST database[J]. Plant Molecular Biology Reporter, 2010, 28(4): 646-653. doi: 10.1007/s11105-010-0192-2
[17] Dang M, Zhang T, Hu Y H, et al. De novo assembly and characterization of bud, leaf and flowers Transcriptome from Juglans regia L. for the identification and characterization of new EST-SSRs[J]. Forests, 2016, 7(10): 247.
[18] 陈凌娜, 马庆国, 张俊佩, 等. 核桃BES-SSR的开发及在遗传多样性分析中的应用[J]. 北京林业大学学报, 2014, 36(6):24-29.
[19] Ikhsan A S, Topçu H, Sütyemez M, et al. Novel 307 polymorphic SSR markers from BAC-end sequences in walnut (Juglans regia L.): Effects of motif types and repeat lengths on polymorphism and genetic diversity[J]. Scientia Horticulturae, 2016, 213(1): 1-4.
[20] ESER E, Topçu H, Kefayati S, et al. Highly polymorphic novel simple sequence repeat markers from Class I repeats in walnut (Juglans regia L. )[J]. Turkish Journal of Agriculture & Forestry, 2019, 43(2): 174-183.
[21] Hama-Ali E O, Tan S G. Using monomorphic microsatellite markers in Oil Palm (Elaeisguineensis Jacq. )[J]. Research & Reviews: Journal of Botanical Sciences, 2014, 3(4): 1-6.
[22] Zhang J P, Zhang W T, Ji F Y, et al. A high‐quality walnut genome assembly reveals extensive gene expression divergences after whole‐genome duplication[J]. Plant Biotechnology Journal, 2020, 18(9): 1848-1850. doi: 10.1111/pbi.13350
[23] Marrano A, Britton M, Zaini P A, et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L) reference genome[J]. GigaScience, 2020, 9(5): giaa050. doi: 10.1093/gigascience/giaa050
[24] Han B, Wang C, Tang Z, et al. Genomewide analysis of microsatellite markers based on sequenced database in Chinese spring wheat (Triticum aestivum L.)[J]. PLoS ONE, 2015, 10: e0141540. doi: 10.1371/journal.pone.0141540
[25] Xue H, Zhang P, Shi T, et al. Genome-wide characterization of simple sequence repeats in Pyrus bretschneideri and their application in an analysis of genetic diversity in pear[J]. BMC Genomics, 2018, 19(1): 473. doi: 10.1186/s12864-018-4822-7
[26] Biswas M K, Xu Q, Mayer C, et al. Genome wide characterization of short tandem repeat markers in sweet orange (Citrus sinensis)[J]. PLoS ONE, 2014, 9(8): e104182. doi: 10.1371/journal.pone.0104182
[27] Chen L N, Dong R Q, Ma Q G, et al. Precocious genotypes and homozygous tendency generated by self-pollination in walnut[J]. BMC Plant Biology, 2018, 18: 323. doi: 10.1186/s12870-018-1549-1
[28] Fu P C, Zhang Y Z, Ya H Y, et al. Characterization of SSR genomic abundance and identification of SSR markers for population genetics in Chinese jujube (Ziziphus jujuba Mill.)[J]. PeerJ, 2016, 4(2): e1735.
[29] Pan G, Chen A, Li J, et al. Genome-wide development of simple sequence repeats database for flax (Linum usitatissimum L.) and its use for genetic diversity assessment[J]. Genetic Resources and Crop Evolution, 2020, 67(4): 865-874. doi: 10.1007/s10722-020-00882-y
[30] Liu S R, An Y L, Li F D, et al. Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis)[J]. Molecular Breeding, 2018, 38(5): 59. doi: 10.1007/s11032-018-0824-z
[31] Lu Q, Hong Y, Li S, et al. Genome-wide identification of microsatellite markers from cultivated peanut (Arachis hypogaea L.)[J]. BMC Genomics, 2019, 20(1): 799. doi: 10.1186/s12864-019-6148-5
[32] Sonah H, Deshmukh R K, Sharma A, et al. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium[J]. PLoS ONE, 2011, 6: e21298. doi: 10.1371/journal.pone.0021298
[33] Qi W H, Jiang X M, Du L M, et al. Genome-wide survey and analysis of microsatellite sequences in bovid species[J]. PLoS ONE, 2015, 10(7): e0133667. doi: 10.1371/journal.pone.0133667
[34] Park S, Son S, Shin M, et al. Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae)[J]. BMC Plant Biology, 2019, 19(1): 1-12. doi: 10.1186/s12870-018-1600-2
[35] 童治军, 焦芳婵, 肖炳光. 普通烟草及其祖先种基因组SSR位点分析[J]. 中国农业科学, 2015, 48(11):2108-2117. doi: 10.3864/j.issn.0578-1752.2015.11.003
[36] 王玉龙, 黄冰艳, 王思雨, 等. 四倍体野生种花生A. monticola全基因组SSR的开发与特征分析[J]. 中国农业科学, 2019, 52(15):2567-2580. doi: 10.3864/j.issn.0578-1752.2019.15.002
[37] Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: surveys and analysis[J]. Genome Research., 2000, 10(7): 967-981. doi: 10.1101/gr.10.7.967
[38] Karaoglu H, Li C M Y, Meyer W. Survey of simple sequence repeats in completed fungal genomes[J]. Molecular Biology and Evolution, 2005, 2(3): 639-649.
[39] Song X M, Yang Q H, Bai Y, et al. Comprehensive analysis of SSRs and database construction using all complete gene-coding sequences in major horticultural and representative plants[J]. Horticulture Research, 2021, 8(1): 122. doi: 10.1038/s41438-021-00562-7
[40] Portis E, Lanteri S, Barchi L, et al. Comprehensive characterization of simple sequence repeats in eggplant (Solanum melongena L.) genome and construction of a web resource[J]. Frontiers in Plant Science, 2018, 9: 401. doi: 10.3389/fpls.2018.00401
[41] Temnykh S. Computational and experimental analysis of microsatellites in Rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential[J]. Genome Research, 2001, 11(8): 1441-1452. doi: 10.1101/gr.184001
[42] Cavagnaro P F, Senalik D A, Yang L, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.)[J]. BMC Genomics, 2010, 11: 569. doi: 10.1186/1471-2164-11-569
[43] Nazareno A G, dos Reis MS. The same but different: monomorphic microsatellite markers as a new tool for genetic analysis[J]. American Journal of Botany, 2011, 98(1): e265-e267. doi: 10.3732/ajb.1100163
[44] Ince A G, Karaca M, Onus A N. CAPS-microsatellites: use of CAPS method to convert non-polymorphic microsatellites into useful markers[J]. Molecular Breeding, 2010, 25(3): 491-499. doi: 10.1007/s11032-009-9347-y
[45] Karaca M, Ince A G. New non-redundant microsatellite and CAPS-microsatellite markers for cotton (Gossypium L.)[J]. Turkish Journal of Field Crops, 2011, 16(2): 172-178.