[1] 张蓉蓉. 黄土高原矿区典型木本植物幼苗对干旱胁迫的生态适应性研究[D]. 太原: 山西大学, 2015.
[2] SHAHID A, NAEEM K, YULIN T. Epigenetic marks for mitigating abiotic stresses in plants[J]. Journal of Plant Physiology, 2022, 275: 153740. doi: 10.1016/j.jplph.2022.153740
[3] BEGCY K, DRESSELHAUS T. Epigenetic responses to abiotic stresses during reproductive development in cereals[J]. Plant Reproduction, 2018, 31(4): 343-355. doi: 10.1007/s00497-018-0343-4
[4] KIM J M, SASAKI T, UEDA M,et al. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants[J]. Frontiers in Plant Science, 2015, 6: 114.
[5] DU Q L, FANG Y P, JIANG J M,et al. Characterization of histone deacetylases and their roles in response to abiotic and PAMPs stresses in Sorghum bicolor[J]. BMC Genomics, 2022, 23(1): 28. doi: 10.1186/s12864-021-08229-2
[6] ZHANG J B, HE S P, LUO J W,et al. A histone deacetylase, GhHDT4D, is positively involved in cotton response to drought stress[J]. Plant Molecular Biology, 2020, 104(1-2): 67-79. doi: 10.1007/s11103-020-01024-9
[7] SHEN Y, LEI T T, CUI X Y,et al. Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature[J]. The Plant Journal:for Cell and Molecular Biology, 2019, 100(5): 991-1006. doi: 10.1111/tpj.14492
[8] YANG C, SHEN W J, CHEN H F,et al. Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean[J]. BMC Plant Biology, 2018, 18(1): 226. doi: 10.1186/s12870-018-1454-7
[9] GUO J E, WANG H H, YANG Y,et al. Histone deacetylase gene SlHDA3 is involved in drought and salt response in tomato[J]. Plant Growth Regulation, 2023, 99(2): 359-372. doi: 10.1007/s10725-022-00913-x
[10] 陈勇智, 苏良辰, 李 玲. TSA对不同抗旱性花生品种响应干旱过程中光合特性及相关基因表达的影响[J]. 华南师范大学学报(自然科学版), 2018, 50(3):72-77.
[11] ZHANG B H, SU L C, HU B,et al. Expression of AhDREB1, an AP2/ERF transcription factor gene from peanut, is affected by histone acetylation and increases abscisic acid sensitivity and tolerance to osmotic stress in Arabidopsis[J]. International Journal of Molecular Sciences, 2018, 19(5): 1441. doi: 10.3390/ijms19051441
[12] XING, LIU,. AhHDA1-mediated AhGLK1 promoted chlorophyll synthesis and photosynthesis regulates recovery growth of peanut leaves after water stress[J]. Plant Science, 2020, 294: 110461. doi: 10.1016/j.plantsci.2020.110461
[13] HU Y, ZHANG L, ZHAO L,et al. Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize[J]. PLoS ONE, 2011, 6(7): e22132. doi: 10.1371/journal.pone.0022132
[14] SONG Y, LIU L J, LI G P,et al. Trichostatin A and 5-Aza-2'-Deoxycytidine influence the expression of cold-induced genes in Arabidopsis[J]. Plant Signal Behav, 2017, 12(11): e1389828. doi: 10.1080/15592324.2017.1389828
[15] GAO G R, LV Z R, ZHANG G Y,et al. An ABA-flavonoid relationship contributes to the differences in drought resistance between different sea buckthorn subspecies[J]. Tree Physiology, 2021, 41(5): 744-755. doi: 10.1093/treephys/tpaa155
[16] ZHANG T, GAO G R, LIU J J,et al. Transcripts and ABA-dependent signaling in response to drought stress in Hippophae rhamnoides L[J]. Trees, 2020, 34(4): 1033-1045. doi: 10.1007/s00468-020-01979-8
[17] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[18] 王 谦, 陈泠澍, 赵 薇, 等. 干旱条件下栓皮栎叶片光系统活性受损的温度指标[J]. 中国农业气象, 2019, 40(5):308-316.
[19] FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: Effects, mechanisms and management[M]//Sustainable Agriculture. Dordrecht: Springer Netherlands, 2009: 153-188.
[20] Muchate N S, Nikalje G C, Rajurkar N S,et al. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance[J]. Botanical Review, 2016, 82(4): 371-406. doi: 10.1007/s12229-016-9173-y
[21] BANERJEE A, ROYCHOUDHURY A. Group II late embryogenesis abundant (LEA) proteins: Structural and functional aspects in plant abiotic stress[J]. Plant Growth Regulation, 2016, 79(1): 1-17. doi: 10.1007/s10725-015-0113-3
[22] Fang Y and Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689. doi: 10.1007/s00018-014-1767-0
[23] 张 晓, 曹慧芬, 赵建国, 等. 脯氨酸对干旱胁迫下白榆扦插苗生长的影响[J]. 山西大同大学学报(自然科学版), 2021, 37(3):1-4.
[24] Nguyen T, Le T, Pham H,et al. Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L. ) under drought stress memory[J]. AIMS Bioengineering, 2020, 7(3): 114-123. doi: 10.3934/bioeng.2020011
[25] 韩蕊莲, 李丽霞, 梁宗锁. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J]. 西北植物学报, 2003, 23(1):23-27. doi: 10.3321/j.issn:1000-4025.2003.01.005
[26] 白志英, 李存东, 吴同燕, 等. 干旱胁迫条件下小麦旗叶酶活性和丙二醛含量的染色体定位[J]. 植物遗传资源学报, 2009, 10(2):255-261. doi: 10.13430/j.cnki.jpgr.2009.02.014
[27] DEMETRIOU K, KAPAZOGLOU A, TONDELLI A,et al. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment[J]. Physiologia Plantarum, 2009, 136(3): 358-368. doi: 10.1111/j.1399-3054.2009.01236.x
[28] ZHENG Y, DING Y, SUN X,et al. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(6): 1703-1713. doi: 10.1093/jxb/erv562
[29] Bano A, Hansen H, DÖRFFLING K,et al. Changes in the contents of free and conjugated abscisic acid, phaseic acid and cytokinins in xylem sap of drought stressed sunflower plants[J]. Phytochemistry, 1994, 37(2): 345-347. doi: 10.1016/0031-9422(94)85058-5
[30] Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology, 2011, 14(3): 290-295. doi: 10.1016/j.pbi.2011.02.001
[31] Zhang J H, Jia W S, Yang J C,et al. Role of ABA in integrating plant responses to drought and salt stresses[J]. Field Crops Research, 2006, 97(1): 111-119. doi: 10.1016/j.fcr.2005.08.018
[32] Sharma A, Shahzad B, Kumar V,et al. Phytohormones regulate accumulation of osmolytes under abiotic stress[J]. Biomolecules, 2019, 9(7): 285-321. doi: 10.3390/biom9070285
[33] Song L, Huang S, Wise A,et al. A transcription factor hierarchy defines an environmental stress response network[J]. Science, 2016, 354(6312): 1550. doi: 10.1126/science.aag1550
[34] SRIDHA S, WU K Q. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology, 2006, 46(1): 124-133. doi: 10.1111/j.1365-313X.2006.02678.x
[35] HE X S, XU L C, PAN C,et al. Drought resistance of Camellia oleifera under drought stress: Changes in physiology and growth characteristics[J]. PLoS ONE, 2020, 15(7): e0235795. doi: 10.1371/journal.pone.0235795
[36] ZHANG X, WOLLENWEBER B, JIANG D,et al. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor[J]. Journal of Experimental Botany, 2008, 59(4): 839-848. doi: 10.1093/jxb/erm364
[37] GUPTA A, RICOMEDINA A, CAÑODELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. doi: 10.1126/science.aaz7614
[38] MA D Y, SUN D X, WANG C Y,et al. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress[J]. Plant Physiology and Biochemistry, 2014, 80: 60-66. doi: 10.1016/j.plaphy.2014.03.024
[39] ZHANG G H, YU Z M, YAO B,et al. SsMYB113, a Schima superba MYB transcription factor, regulates the accumulation of flavonoids and functions in drought stress tolerance by modulating ROS generation[J]. Plant and Soil, 2022, 478(1-2): 427-444. doi: 10.1007/s11104-022-05466-6
[40] SHENG X L, CHEN H W, WANG J M,et al. Joint transcriptomic and metabolic analysis of flavonoids in Cyclocarya paliurus leaves[J]. ACS Omega, 2021, 6(13): 9028-9038. doi: 10.1021/acsomega.1c00059