[1] Oberleitner F, Egger C, Oberdorfer S, et al. Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica[J]. Forest Ecology and Management, 2021, 479: 118580. doi: 10.1016/j.foreco.2020.118580
[2] Fao, Global Forest Resources Assessment (FAO, 2015)[R]. Roma: Food and Agriculture Organization of the United Nations, 2015.
[3] Jiaojun Z, Mao Z, Hu L, et al. Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China[J]. Journal of Forest Research, 2007, 12: 403-416. doi: 10.1007/s10310-007-0033-9
[4] Yan Q, Jiaojun Z, Gang Q. Comparison of spatial patterns of soil seed banks between larch plantations and adjacent secondary forests in Northeast China: implication for spatial distribution of larch plantations[J]. Trees, 2013, 27: 1747-1754. doi: 10.1007/s00468-013-0920-y
[5] Holz S, Placci G, Quintana R D. Effects of history of use on secondary forest regeneration in the Upper Parana Atlantic Forest (Misiones, Argentina)[J]. Forest Ecology & Management, 2009, 258(7): 1629-1642.
[6] Wang Y, Ziv G, Adami M, et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon[J]. Nature Sustainability, 2020, 3(4): 1-6.
[7] Chen X, Wang X, Li J, et al. Species diversity of primary and secondary forests in Wanglang Nature Reserve[J]. Global Ecology and Conservation, 2020, 22: e01022. doi: 10.1016/j.gecco.2020.e01022
[8] Muñoz Mazon M, Klanderud K, Finegan B, et al. How forest structure varies with elevation in old growth and secondary forest in Costa Rica[J]. Forest Ecology and Management, 2020, 469: 118191. doi: 10.1016/j.foreco.2020.118191
[9] 全 锋, 周超凡, 段光爽, 等. 基于蓄积生长率的蒙古栎天然次生林抚育间伐研究[J]. 林业科学研究, 2020, 33(2):61-68.
[10] Deliang L, Lauren S. P, Dapao Y, et al. Differential responses of tree species to a severe ice storm and their implications to forest composition in the southeast United States[J]. Forest Ecology and Management, 2020, 468: 118177. doi: 10.1016/j.foreco.2020.118177
[11] 朱教君, 刘世荣. 次生林概念与生态干扰度[J]. 生态学杂志, 2007, 26(7):1085-1093. doi: 10.3321/j.issn:1000-4890.2007.07.022
[12] Christensen N, Peet R. Convergence during secondary forest succession[J]. The Journal of Ecology, 1984, 72: 25-36. doi: 10.2307/2260004
[13] 左 政, 郑小贤. 不同干扰等级下常绿阔叶次生林林分结构及树种多样性[J]. 浙江农林大学学报, 2019, 36(1):21-30. doi: 10.11833/j.issn.2095-0756.2019.01.004
[14] Chokkalingam U, De Jong W. Secondary forest: A working definition and typology[J]. International Forestry Review, 2001, 3(1): 19-26.
[15] Finegan B. Forest succession[J]. Nature, 1984, 312: 109-114. doi: 10.1038/312109a0
[16] 周灿芳. 植物群落动态研究进展[J]. 生态科学, 2000, 19(2):53-59. doi: 10.3969/j.issn.1008-8873.2000.02.010
[17] 徐文铎, 何兴元, 陈 玮, 等. 长白山植被类型特征与演替规律的研究[J]. 生态学杂志, 2004, 23(5):162-174. doi: 10.3321/j.issn:1000-4890.2004.05.031
[18] 周以良, 赵光仪. 小兴安岭—长白山林区天然次生林的类型、分布及其演替规律[J]. 东北林业大学学报, 1964,(3):33-45.
[19] 陈大珂, 周晓峰, 丁宝永, 等. 黑龙江省天然次生林研究(Ⅰ)——栽针保阔的经营途径[J]. 东北林业大学学报, 1984, 12(4):1-12.
[20] Prévost M. Effect of cutting intensity on microenvironmental conditions and regeneration dynamics in yellow birch - Conifer stands[J]. Canadian Journal of Forest Research, 2008, 38: 317-330. doi: 10.1139/X07-168
[21] 红 玉, 王 耀, 金 鑫, 等. 抚育经营对杨桦次生林林分结构及土壤性质的影响[J]. 西北林学院学报, 2018, 33(3):67-72. doi: 10.3969/j.issn.1001-7461.2018.03.11
[22] 李玉祥, 焦振英, 张富田, 等. 寒温带云冷杉林次生演替成亚高山草甸人工更新技术的研究[J]. 东北林业大学学报, 1994, 22(4):40-45.
[23] Prévost M, Charette L. Selection cutting in a yellow birch–conifer stand, in Quebec, Canada: Comparing the single-tree and two hybrid methods using different sizes of canopy opening[J]. Forest Ecology and Management, 2015, 357: 195-205. doi: 10.1016/j.foreco.2015.08.003
[24] 梁立东, 李明文. 抚育对黑河地区典型天然次生林群落结构的影响[J]. 防护林科技, 2020,(7):1-3+33.
[25] Dai L, Shao G, Chen G, et al. Forest cutting and regeneration methodology on Changbai Mountain[J]. Journal of Forestry Research, 2003, 14(1): 56-60. doi: 10.1007/BF02856763
[26] 姚陈健. 伪满时期东北农林生态变迁研究[D]. 辽宁锦州: 渤海大学, 2019.
[27] Ram D, Lindström Å, Pettersson L, et al. Forest clear-cuts as habitat for farmland birds and butterflies[J]. Forest Ecology and Management, 2020, 473: 118239. doi: 10.1016/j.foreco.2020.118239
[28] 张海军, 张淑兰, 王长宝. 小兴安岭红松种群天然更新及影响因子的探讨[J]. 林业资源管理, 2015,(2):150-153.
[29] 朴春寿, 赵建卓, 李少华, 等. 林间放牧对森林影响的调查与思考[J]. 吉林林业科技, 2012, 41(1):53-54. doi: 10.3969/j.issn.1005-7129.2012.01.019
[30] 金光泽, 杨桂燕, 马建章, 等. 松果采摘对小兴安岭主要林型红松土壤种子库和幼苗库的影响[J]. 自然资源学报, 2010, 25(11):1845-1854. doi: 10.11849/zrzyxb.2010.11.004
[31] Długosiewicz J, Zając S, Wysocka-Fijorek E, et al. Comparative analysis of natural and artificial regeneration in Nowa Dęba Forest District[J]. Folia Forestalia Polonica, 2019, 61: 230-241. doi: 10.2478/ffp-2019-0022
[32] 丁 磊, 胡万良, 丁国泉, 等. 近自然森林经营在辽东山区次生林恢复中的应用效果评价[J]. 东北林业大学学报, 2013, 41(3):30-34. doi: 10.3969/j.issn.1000-5382.2013.03.009
[33] 柏广新, 牟长城. 抚育对长白山幼龄次生林群落结构与动态的影响[J]. 东北林业大学学报, 2012, 40(10):48-55. doi: 10.3969/j.issn.1000-5382.2012.10.012
[34] 李秀珍, 王绪高, 胡远满, 等. 林火因子对大兴安岭森林植被演替的影响[J]. 福建林学院学报, 2004, 24(2):182-187. doi: 10.3969/j.issn.1001-389X.2004.02.022
[35] 马楠楠, 张彦雷, 李 建, 等. 黑龙江呼玛县森林火灾时空分布特征[J]. 东北林业大学学报, 2016, 44(5):20-23. doi: 10.3969/j.issn.1000-5382.2016.05.005
[36] 赵大昌. 长白山火山爆发和植被发展演替关系的初步探讨[J]. 自然资源学报, 1984,(1):72-78.
[37] 董厚德, 唐炯炎. 辽东山地“乱石窖”植被演替规律的初步研究[J]. 植物生态学与地植物学丛刊, 1965, 3(1):117-130.
[38] 李 威, 周 梅, 赵鹏武, 等. 大兴安岭东麓火烧迹地恢复初期植被特征[J]. 东北林业大学学报, 2020, 48(1):51-55. doi: 10.3969/j.issn.1000-5382.2020.01.009
[39] 何 潇, 李海奎, 曹 磊, 等. 退化森林生态系统中林分碳储量的驱动因素—以内蒙古大兴安岭为例[J]. 林业科学研究, 2020, 33(2):69-76.
[40] 李秀芬, 朱教君, 王庆礼, 等. 森林的风/雪灾害研究综述[J]. 生态学报, 2005, 25(1):148-157. doi: 10.3321/j.issn:1000-0933.2005.01.024
[41] Nagel T, Diaci J. Intermediate wind disturbance in an old-growth beech-fir forest in southeastern Slovenia[J]. Canadian Journal of Forest Research, 2011, 36: 629-638.
[42] 李秀芬, 朱教君, 王庆礼, 等. 辽东山区天然次生林雪/风灾害成因及分析[J]. 应用生态学报, 2004, 15(6):941-946. doi: 10.3321/j.issn:1001-9332.2004.06.006
[43] 程肖侠, 延晓冬. 气候变化对中国大兴安岭森林演替动态的影响[J]. 生态学杂志, 2007, 26(8):1277-1284.
[44] 张晓玉, 田晓瑞. 厄尔尼诺/拉尼娜对大兴安岭森林火险天气的影响[J]. 林业科学研究, 2018, 31(6):55-62.
[45] Taylor A, Endicott S, Hennigar C. Disentangling mechanisms of early succession following harvest: implications for climate change adaptation in Canada's boreal-temperate forests[J]. Forest Ecology and Management, 2020, 461: 117926. doi: 10.1016/j.foreco.2020.117926
[46] 陈利顶, 傅伯杰. 干扰的类型、特征及其生态学意义[J]. 生态学报, 2000, 20(4):581-586. doi: 10.3321/j.issn:1000-0933.2000.04.008
[47] 顾云春. 中国的兴安落叶松林[J]. 林业资源管理, 1982,(2):27-30.
[48] 顾云春. 大兴安岭林区森林群落的演替[J]. 植物生态学与地植物学丛刊, 1985, 9(1):64-70.
[49] 王绪高, 李秀珍, 贺红士, 等. 大兴安岭北坡落叶松林火后植被演替过程研究[J]. 生态学杂志, 2004, 23(5):35-41. doi: 10.3321/j.issn:1000-4890.2004.05.007
[50] 王义弘. 帽儿山地区次生林的天然更新和演替[J]. 东北林业大学学报, 1984, 12(A1):39-46.
[51] 陆龙龙. 长白山林区阔叶红松林不同演替阶段群落结构特征研究[D]. 吉林:北华大学, 2019.
[52] 陈大珂, 周晓峰, 祝 宁. 天然次生林——结构、功能、动态与经营[M]. 哈尔滨: 东北林业大学出版社, 1994.
[53] 周以良, 李景文. 中国东北东部山地主要植被类型的特征及其分布规律[J]. 植物生态学与地植物学丛刊, 1964, 2(2):190-206.
[54] 朱教君. 次生林经营基础研究进展[J]. 应用生态学报, 2002, 13(12):1689-1694. doi: 10.3321/j.issn:1001-9332.2002.12.040
[55] Buma B. Disturbance interactions: characterization, prediction, and the potential for cascading effects[J]. Ecosphere, 2015, 6(4): 1-15.
[56] Cannon J, Peterson C, O'brien J, et al. A review and classification of interactions between forest disturbance from wind and fire[J]. Forest Ecology and Management, 2017, 406: 381-390. doi: 10.1016/j.foreco.2017.07.035