[1] 王政权, 郭大立. 根系生态学[J]. 植物生态学报, 2008, 32(6):1213-1216. doi: 10.3773/j.issn.1005-264x.2008.06.001
[2] Santantinio D, Grace J C. Estimating fine-root production turnover from biomass and decomposition data: a compartment flow model[J]. Canadian Journal of Forest Research, 1987, 17(5): 900-908.
[3] Philpott T J, Barker J S, Prescott C E, et al. Retention trees slow post-harvest fine-root decomposition in a coastal temperate rainforest[J]. Forest Ecology and Management, 2018, 430: 431-444. doi: 10.1016/j.foreco.2018.08.036
[4] 肖海龙, 盛茂银. 陆地森林植被植物细根对全球气候变化的响应研究进展[J]. 生态科学, 2020, 39(2):199-206.
[5] Valverde-Barrantes O J, Freschet G T, Roumet C, et al. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants[J]. New Phytologist, 2017, 215(4): 1562-1573. doi: 10.1111/nph.14571
[6] 张 咪, 刘永峰, 贾艳梅, 等. 黄土高原刺槐细根形态特征和生物量研究[J]. 西北林学院学报, 2019, 34(2):22-27.
[7] 尤健健, 张文辉, 邓 磊, 等. 间伐对黄龙山油松中龄林细根空间分布和形态特征的影响[J]. 生态学报, 2017, 37(9):3065-3073.
[8] 王明凯, 李文彬, 文 剑. 基于探地雷达对粗根的识别技术研究[J]. 森林工程, 2020, 36(3):21-27. doi: 10.3969/j.issn.1006-8023.2020.03.004
[9] 张小全. 环境因子对树木细根生物量、生产与周转的影响[J]. 林业科学研究, 2001, 14(5):566-573. doi: 10.3321/j.issn:1001-1498.2001.05.017
[10] 杨秀云, 韩有志, 张芸香, 等. 采伐干扰对华北落叶松细根生物量空间异质性的影响[J]. 生态学报, 2012, 32(1):64-73.
[11] Noguchi K, Han Q M, Araki M G, et al. Fine-root dynamics in a young hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning[J]. Journal of Forest Research, 2011, 16(4): 284-291. doi: 10.1007/s10310-010-0221-x
[12] 张 犇, 金光泽. 择伐对阔叶红松林细根生物量及其时空分布的影响[J]. 林业科学研究, 2014, 27(2):240-245.
[13] 周新年. 山地森林生态采运理论与实践[M]. 北京: 中国林业出版社, 2018: 1-25.
[14] 周新年, 赖阿红, 周成军, 等. 山地森林生态采运研究进展[J]. 森林与环境学报, 2015, 35(2):185-192.
[15] 巫志龙, 周成军, 周新年, 等. 杉阔混交林不同强度择伐对土壤温度的影响[J]. 森林与环境学报, 2015, 35(1):8-12.
[16] 巫志龙, 周成军, 周新年, 等. 不同强度采伐5年后杉阔混交人工林土壤呼吸速率差异[J]. 林业科学, 2019, 55(6):142-149. doi: 10.11707/j.1001-7488.20190617
[17] Tian D L, Peng Y Y, Yan W D, et al. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in Masson pine plantations[J]. Pedosphere, 2010, 20(4): 486-493. doi: 10.1016/S1002-0160(10)60038-0
[18] 刘运科, 范 川, 李贤伟, 等. 间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响[J]. 植物生态学报, 2012, 36(7):645-654.
[19] 张小全, 吴可红. 森林细根生产和周转研究[J]. 林业科学, 2001, 37(3):126-138. doi: 10.3321/j.issn:1001-7488.2001.03.021
[20] Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 1996, 187(2): 159-219.
[21] Berish C W, Ewel J J. Root development in simple and complex tropical successional ecosystems[J]. Plant and Soil, 1988, 106(1): 73-84. doi: 10.1007/BF02371197
[22] López B C, Sabate S, Gracia C A. Thinning effects on carbon allocation to fine roots in a Quercus ilex forest[J]. Tree Physiology, 2003, 23(17): 1217-1224. doi: 10.1093/treephys/23.17.1217
[23] Leuschner C, Harteveld M, Hertel D. Consequences of increasing forest use intensity for biomass, morphology and growth of fine roots in a tropical moist forest on Sulawesi, Indonesia[J]. Agriculture Ecosystems and Environment, 2009, 129(4): 474-481. doi: 10.1016/j.agee.2008.10.023
[24] Kramer-Walter K R, Bellingham P J, Millar T R, et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum[J]. Journal of Ecology, 2016, 104(5): 1299-1310. doi: 10.1111/1365-2745.12562
[25] 绍 森. 择伐对太岳山油松林表层细根生物量和土壤养分含量的影响[J]. 福建农林大学学报: 自然科学版, 2017, 46(6):654-658.
[26] Hill J O, Simpson R J, Moore A D, et al. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition[J]. Plant and Soil, 2006, 286(1-2): 7-19. doi: 10.1007/s11104-006-0014-3