[1] Singh R K, Bhalerao R P, Eriksson M E. Growing in time: exploring the molecular mechanisms of tree growth[J]. Tree Physiology, 2021, 41(4): 657-678. doi: 10.1093/treephys/tpaa065
[2] 康向阳. 关于林木育种策略的思考[J]. 北京林业大学学报, 2019, 41(12):15-22. doi: 10.12171/j.1000-1522.20190412
[3] Grattapaglia D, Plomion C, Kirst M, et al. Genomics of growth traits in forest trees[J]. Current Opinion in Plant Biology, 2009, 12(2): 148-156. doi: 10.1016/j.pbi.2008.12.008
[4] Volker P W, Potts B M, Borralho N M G. Genetic parameters of intra- and inter-specific hybrids of Eucalyptus globulus and E. nitens[J]. Tree Genetics & Genomes, 2008, 4(3): 445-460.
[5] Stackpole D J, Vaillancourt R E, de Aguigar M, et al. Age trends in genetic parameters for growth and wood density in Eucalyptus globulus[J]. Tree Genetics & Genomes, 2010, 6(2): 179-193.
[6] Stackpole D J, Vaillancourt R E, Alves A, et al. Genetic variation in the chemical components of Eucalyptus globulus wood[J]. G3: Genes, Genomes, Genetics, 2011, 1(2): 151-159.
[7] Hein P R G, Bouvet J-M, Mandrou E, et al. Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla S. T. Blake wood[J]. Annals of Forest Science, 2012, 69(6): 681-691. doi: 10.1007/s13595-012-0186-3
[8] Salas M, Nieto V, Perafán L, et al. Genetic parameters and comparison between native and local landraces of Eucalyptus globulus Labill. ssp. globulus growing in the central highlands of Colombia[J]. Annals of Forest Science, 2014, 71(3): 405-414. doi: 10.1007/s13595-013-0342-4
[9] Chen S, Weng Q, Li F, et al. Genetic parameters for growth and wood chemical properties in Eucalyptus urophylla × E. tereticornis hybrids[J]. Annals of Forest Science, 2018, 75(1): 16. doi: 10.1007/s13595-018-0694-x
[10] Yang H, Weng Q, Li F, et al. Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla × E. tereticornis family in southern China[J]. Forest Science, 2018, 64(3): 225-232. doi: 10.1093/forsci/fxx011
[11] MacDonald A C, Borralho N M G, Potts B M. Genetic variation for growth and wood density in Eucalyptus globulus ssp. globulus in Tasmania (Australia)[J]. Silvae Genetica, 1997, 46(4): 236-241.
[12] Gan S, Li M, Li F, et al. Genetic analysis of growth and susceptibility to bacterial wilt (Ralstonia solanacearum) in Eucalyptus by interspecific factorial crossing[J]. Silvae Genetica, 2004, 53(5): 254-258.
[13] 王建忠, 熊 涛, 张 磊, 等. 25年生大花序桉种源生长与形质性状的遗传变异及选择[J]. 林业科学研究, 2016, 29(5):705-713. doi: 10.3969/j.issn.1001-1498.2016.05.012
[14] Kien N D, Quang T H, Jansson G, et al. Cellulose content as a selection trait in breeding for kraft pulp yield in Eucalyptus urophylla[J]. Annals of Forest Science, 2009, 66(7): 711. doi: 10.1051/forest/2009064
[15] Stackpole D J, Vaillancourt R E, Downes G M, et al. Genetic control of kraft pulp yield in Eucalyptus globulus[J]. Canadian Journal of Forest Research, 2010, 40(5): 917-927. doi: 10.1139/X10-035
[16] He X, Li F, Li M, et al. Quantitative genetics of cold hardiness and growth in Eucalyptus as estimated from E. urophylla × E. tereticornis hybrids[J]. New Forests, 2012, 43(3): 383-394. doi: 10.1007/s11056-011-9287-3
[17] Callister A N, England N, Collins S. Genetic analysis of Eucalyptus globulus diameter, straightness, branch size, and forking in Western Australia[J]. Canadian Journal of Forest Research, 2011, 41(6): 1333-1343. doi: 10.1139/x11-036
[18] Madhibha T, Murepa R, Musokonyi C, et al. Genetic parameter estimates for interspecific Eucalyptus hybrids and implications for hybrid breeding strategy[J]. New Forests, 2013, 44(1): 63-84. doi: 10.1007/s11056-011-9302-8
[19] 彭仕尧, 徐建民, 李光友, 等. 尾细桉无性系在雷州半岛的生长与遗传分析[J]. 中南林业科技大学学报:自然科学版, 2013, 33(4):23-27.
[20] Weng Q, He X, Li F, et al. Hybridizing ability and heterosis between Eucalyptus urophylla and E. tereticornis for growth and wood density over two environments[J]. Silvae Genetica, 2014, 63(1-2): 15-24.
[21] Hung T D, Brawner J T, Roger M, et al. Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F. Muell. to support tree breeding in Vietnam[J]. Annals of Forest Science, 2015, 72(2): 205-217. doi: 10.1007/s13595-014-0426-9
[22] Zhu Y, Wu S, Xu J, et al. Genetic parameters for growth traits and stem-straightness in Eucalyptus urophylla × E. camaldulensis hybrids from a reciprocal mating design[J]. Euphytica, 2017, 213(7): 142. doi: 10.1007/s10681-017-1923-3
[23] Nezu I, Ishiguri F, Aiso H, et al. Repeatability of growth characteristics and wood properties for solid wood production from Eucalyptus camaldulensis half-sib families growing in Thailand[J]. Silave Genetica, 2020, 69(1): 36-43. doi: 10.2478/sg-2020-0006
[24] 董雷鸣, 张守攻, 孙晓梅. 日本落叶松全双列交配生长性状的遗传分析[J]. 林业科学研究, 2019, 32(4):11-18.
[25] Belaber E C, Gauchat M E, Rodríguez G H, et al. Estimation of genetic parameters using spatial analysis of Pinus elliottii Engelm. var. ellittii second-generation progeny trials in Argentina[J]. New Forests, 2019, 50(4): 605-627. doi: 10.1007/s11056-018-9682-0
[26] Brooker M I H. A new classification of the genus Eucalyptus L'Hér. (Myrtaceae)[J]. Australian Systematic Botany, 2000, 13(1): 79-148. doi: 10.1071/SB98008
[27] FAO. Eucalypts for planting[M]. Rome: Food and Agriculture Organization of the United Nations, 1979.
[28] Eldridge K, Davidson J, Harwood C, et al. Eucalypt domestication and breeding[M]. New York: Oxford University Press, 1993.
[29] 何旭东, 李发根, 翁启杰, 等. 尾叶桉 × 细叶桉杂种生长和耐寒性的联合选择[J]. 中南林业科技大学学报:自然科学版, 2010, 30(8):68-71.
[30] 陈升侃, 周长品, 翁启杰, 等. 尾叶桉 × 细叶桉木材密度与生长的联合选择[J]. 林业科学研究, 2018, 31(2):77-82.
[31] Gilmour A R, Gogel B J, Cullis B R, et al. ASReml user guide release 3.0[M]. Hemel Hempstead: VSN International Ltd, 2009.
[32] 林元震, 陈晓阳. R与ASRmel-R统计分析教程[M]. 北京: 中国林业出版社, 2014.
[33] 陈少雄, 欧阳林男, 王军锋, 等. 中国桉树大径材培育与利用[M]. 北京: 中国林业出版社, 2020.
[34] 刘奕清, 王大平. 尾细桉的组织培养和快速繁殖[J]. 西南农业大学学:自然科学版, 2005, 27(2):237-239.
[35] 栾启福, 丁显印, 徐永勤, 等. 主成分回归分析在火炬松早期选择中的应用研究[J]. 安徽农业大学学报, 2019, 46(2):264-269.