[1] 盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1):1-14.
[2] 许传德. 从连续八次森林资源清查数据看我国森林经营[J]. 林业经济, 2013, 37(4):8-11, 36.
[3] 童 冉, 周本智, 姜丽娜, 等. 我国杉木人工林可持续经营面临的问题及发展策略——基于全国分布区的调查[J]. 世界林业研究, 2019, 32(2):90-96.
[4] 王志超, 杜阿朋, 陈少雄. 我国桉树人工林现状及可持续经营对策研究[J]. 桉树科技, 2012, 29(4):58-62. doi: 10.3969/j.issn.1674-3172.2012.04.012
[5] Rédei T, Csecserits A, Lhotsky B, et al. Plantation forests cannot support the richness of forest specialist plants in the forest-steppe zone[J]. Forest Ecology and Management, 2020, 461: 117964. doi: 10.1016/j.foreco.2020.117964
[6] Tavares A, Beiroz W, Fialho A, et al. Eucalyptus plantations as hybrid ecosystems: Implications for species conservation in the Brazilian Atlantic forest[J]. Forest Ecology and Management, 2019, 433: 131-139. doi: 10.1016/j.foreco.2018.10.063
[7] Wu J, Liu Z, Chen D, et al. Understory plants can make substantial contributions to soil respiration: Evidence from two subtropical plantations[J]. Soil Biology and Biochemistry, 2011, 43(11): 2355-2357. doi: 10.1016/j.soilbio.2011.07.011
[8] Cole E, Newton M, Bailey J D. Understory vegetation dynamics 15 years post-thinning in 50-year-old Douglas-fir and Douglas-fir/western hemlock stands in western Oregon, USA[J]. Forest Ecology and Management, 2017, 384: 358-370. doi: 10.1016/j.foreco.2016.11.003
[9] 王瑞华, 葛晓敏, 唐罗忠. 林下植被多样性、生物量及养分作用研究进展[J]. 世界林业研究, 2014, 27(1):43-48.
[10] 李光敏, 陈伏生, 徐志文, 等. 间伐和林下植被剔除对毛竹林土壤氮矿化速率及其温度敏感性的影响[J]. 生态学报, 2019, 39(11):4106-4115.
[11] Rivalland V, Calvet J C, Berbigier P, et al. Transpiration and CO2 fluxes of a pine forest: modelling the undergrowth effect[J]. Annales Geophysicae, 2005, 23(2): 994-1000.
[12] 徐 馨, 王法明, 邹 碧, 等. 不同林龄木麻黄人工林生物多样性与土壤养分状况研究[J]. 生态环境学报, 2013, 22(9):1514-1522. doi: 10.3969/j.issn.1674-5906.2013.09.009
[13] 庞圣江, 张 培, 杨保国, 等. 广西大青山西南桦人工林林下植物多样性与稳定性[J]. 中南林业科技大学学报, 2018, 38(2):103-107, 113.
[14] Heilmeier, Hermann. Functional traits explaining plant responses to past and future climate changes[J]. Flora, 2019, 254: 1-11. doi: 10.1016/j.flora.2019.04.004
[15] Poorter, Lourens. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests[J]. New Phytologist, 2009, 181(4): 890-900. doi: 10.1111/j.1469-8137.2008.02715.x
[16] Cendrero M M P, Moran M S, Papuga S A, et al. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments[J]. Journal of Experimental Botany, 2015, 67(1): 275-286.
[17] Michael C D, Anna S, Mariah S C, et al. Nonstructural carbon in woody plants[J]. Annual Review of Plant Biology, 2014, 65(1): 667-687. doi: 10.1146/annurev-arplant-050213-040054
[18] 孙美美, 宋变兰, 时伟宇, 等. 黄土丘陵区刺槐、辽东栎林生态系统碳汇功能特征[J]. 水土保持研究, 2020, 27(2):55-61.
[19] 李 娟, 白彦锋, 彭 阳, 等. 湖南会同县杉木人工林管理碳汇的核算研究[J]. 林业科学研究, 2017, 30(3):436-443.
[20] 李 萌, 陈永康, 徐浩成, 等. 不同间伐强度对南亚热带杉木人工林林下植物功能群的影响[J]. 生态学报, 2020, 40(14):1-9.
[21] 王 锋. 海拔和造林密度对马占相思人工林生长的影响[J]. 广东林业科技, 2014, 30(1):42-45.
[22] 林 雯, 李聪颖, 周 平. 广州城市森林六种典型林分碳积累研究[J]. 生态科学, 2019, 38(6):74-80.
[23] Wang F, Li Z, Xia H, et al. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China[J]. Soil Science and Plant Nutrition, 2010, 56(2): 297-306. doi: 10.1111/j.1747-0765.2010.00454.x
[24] Buysse J, Merckx R. An improved colorimetic method to quantify sugar content of plant tissue[J]. Journal of Experiment Botany, 1993, 44: 1627-1629.
[25] Díaz S, Lavorel S, de Bello F, et al. Incorporating plant functional diversity effects in ecosystem service assessments[J]. Proceedings of the National Academy of Science of the United States of America, 2007, 104(52): 20684-20689. doi: 10.1073/pnas.0704716104
[26] Ülo N. Components of leaf dry mass per area-thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants[J]. New Phytologist, 1999, 144(1): 35-47. doi: 10.1046/j.1469-8137.1999.00466.x
[27] Ali A M, Darvishzadeh R, Skidmore A K, et al. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices[J]. Agricultural and Forest Meteorology, 2017, 236: 162-174. doi: 10.1016/j.agrformet.2017.01.015
[28] 刘西军, 陈 静, 徐小牛, 等. 桂花叶片SPAD、叶绿素含量和比叶重特征[J]. 安徽农业大学学报, 2013, 40(1):51-54.
[29] 韦宏宇. 广西崇左市凤凰山林场尾叶桉和马尾松林下植被多样性特征分析[J]. 安徽农业科学, 2020, 48(2):127-129, 132. doi: 10.3969/j.issn.0517-6611.2020.02.034
[30] Bojović B, Stojanović J. Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition[J]. Archives of Biological Sciences, 2005, 57(4): 283-290. doi: 10.2298/ABS0504283B
[31] Baker R N. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 2008, 59(1): 89-113. doi: 10.1146/annurev.arplant.59.032607.092759
[32] 赵 镭, 杨海波, 王达力, 等. 浙江天童常见种幼苗的光合特性及非结构性碳水化合物储存[J]. 华东师范大学学报:自然科学版, 2011(4):35-44.
[33] 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35(12):1245-1255.
[34] Davidson A, Keller F, Turgeon R. Phloem loading, plant growth form, and climate[J]. Protoplasma, 2011, 248(1): 153-163. doi: 10.1007/s00709-010-0240-7
[35] 杨 芳, 王振孟, 朱大海, 等. 常绿阔叶林林下6种木本植物叶片非结构性碳水化合物的动态特征[J]. 应用与环境生物学报, 2019, 25(5):1075-1083.
[36] Hoch G, Richter A, Korner C. Non-structural carbon compounds in temperate forest trees[J]. Plant, Cell & Environment, 2003, 26(7): 1067-1081.
[37] 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林不同林层非结构性碳水化合物特征[J]. 应用生态学报, 2018, 29(3):775-782.
[38] Poorter L, Kitajima K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species[J]. Ecology, 2007, 88(4): 1000-1011. doi: 10.1890/06-0984
[39] Myers J A, Kitajima K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J]. Journal of Ecology, 2007, 95(2): 383-395. doi: 10.1111/j.1365-2745.2006.01207.x
[40] Tanner E V J, Vitousek P M, Cuevas E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains[J]. Ecology, 1998, 79(1): 10-22. doi: 10.1890/0012-9658(1998)079[0010:EIONLO]2.0.CO;2
[41] Güsewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266. doi: 10.1111/j.1469-8137.2004.01192.x
[42] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385. doi: 10.1111/j.1469-8137.2005.01530.x
[43] Finzi AC, Canham C D. Sapling growth in response to light and nitrogen availability in a southern New England forest[J]. Forest Ecology and Management, 2000, 131(1): 153-165.
[44] Gusewell S, Koerselman W, Verhoeven J T A. Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications, 2003, 13(2): 372-384. doi: 10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2
[45] Davidson E A, Reis de Carvalho C J, Vieira I C G, et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest[J]. Ecological Applications, 2004, 14(4): 150-163.
[46] Mo Q, Li Z, Zhu W, et al. Reforestation in southern China: revisiting soil N mineralization and nitrification after 8 years restoration[J]. Scientific Reports, 2016, 6: 19770. doi: 10.1038/srep19770
[47] Liu L, Zhang T, Gilliam F S, et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J]. PLoS ONE, 2013, 8(4): e61188. doi: 10.1371/journal.pone.0061188
[48] Li Y, Niu S, Yu G. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis[J]. Global Change Biology, 2016, 22(2): 934-943. doi: 10.1111/gcb.13125