[1] 彭方仁, 李永荣, 郝明灼, 等. 我国薄壳山核桃生产现状与产业化发展策略[J]. 林业科技开发, 2012, 26(4):1-4.
[2] 张日清, 吕芳德, 何 方. 美国山核桃及其在我国的适应性研究[J]. 江苏林业科技, 2001, 28(4):45-47. doi: 10.3969/j.issn.1001-7380.2001.04.018
[3] 贾晓东, 王 涛, 张计育, 等. 美国山核桃的研究进展[J]. 中国农学通报, 2012, 28(4):74-78. doi: 10.3969/j.issn.1000-6850.2012.04.015
[4] 张日清, 李 江, 吕芳德. 我国引种美国山核桃历程及资源现状研究[J]. 经济林研究, 2003, 21(4):107-109. doi: 10.3969/j.issn.1003-8981.2003.04.036
[5] 张普娟, 鲍 瑾, 刘 鹏, 等. 近年我国长山核桃审(认)定情况进展[J]. 江苏农业科学, 2016, 44(8):216-219.
[6] Conner P, Wood B. Identification of Pecan cultivars and their genetic relatedness as determined by randomly amplied polymorphic DNA analysis[J]. Journal of the American Society for Horticultural Science, 2001, 126: 474-480. doi: 10.21273/JASHS.126.4.474
[7] 张日清, 何 方, 吕德芳, 等. 美国山核桃群体遗传多样性的RAPD分析[J]. 经济林研究, 2001, 19(2):1-6. doi: 10.3969/j.issn.1003-8981.2001.02.001
[8] 张日清, 吕德芳, 谭晓风, 等. 美国山核桃主要栽培品种的RAPD鉴定[J]. 经济林研究, 2004, 22(4):1-5. doi: 10.3969/j.issn.1003-8981.2004.04.001
[9] 李 晖, 张 瑞, 彭方仁, 等. 美国山核桃种质资源遗传多样性ISSR分析[J]. 南京林业大学学报:自然科学版, 2015, 39(4):7-12.
[10] 刘广勤, 王鹏良, 周蓓蓓, 等. 薄壳山核桃SRAP标记体系的优化和遗传多样性分析[J]. 江苏农业学报, 2010, 26(5):1037-1042. doi: 10.3969/j.issn.1000-4440.2010.05.025
[11] Grauke L J, Iqbal M J, Reddy A S, et al. Developing microsatellite DNA markers in Pecan[J]. Journal of the American Society for Horticultural Science, 2003, 128(3): 374-380. doi: 10.21273/JASHS.128.3.0374
[12] Zhang C, Yao X, Ren H, et al. Characterization and development of genomic SSRs in Pecan (Carya illinoinensis)[J]. Forests, 2020, 11(1): 61. doi: 10.3390/f11010061
[13] Nolan B, Grauke L J, Klein P. Genotyping by sequencing (GBS) and SNP marker analysis of diverse accessions of Pecan (Carya illinoinensis)[J]. Tree Genetics & Genomes, 2019, 15(1): 8.
[14] 陈亚辉, 朱海军, 生静雅, 等. DNA条形码序列对不同品种美国山核桃的鉴定[J]. 江苏农业学报, 2013, 29(6):1445-1450. doi: 10.3969/j.issn.1000-4440.2013.06.042
[15] Mo Z, Lou W, Chen Y, et al. The Chloroplast genome of Carya illinoinensis: Genome structure, adaptive evolution, and phylogenetic analysis[J]. Forests, 2020, 11(2): 207. doi: 10.3390/f11020207
[16] Wang X, Rhein H S, Jenkins J, et al. Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations[J]. Tree Genetics & Genomes, 2020, 16(4): 48.
[17] Kalia R K, Rai M K, Kalia S, et al. Microsatellite markers: an overview of the recent progress in plants[J]. Euphytica, 2011, 177(3): 309-334. doi: 10.1007/s10681-010-0286-9
[18] 毛秀红, 朱士利, 李善文, 等. 基于荧光SSR标记的毛白杨核心种质构建[J]. 北京林业大学学报, 2020, 42(7):40-47. doi: 10.12171/j.1000-1522.20190413
[19] 郑纪伟, 教忠意, 王保松, 等. 柳树新品种指纹图谱构建[J]. 江苏林业科技, 2020, 47(2):1-5, 56. doi: 10.3969/j.issn.1001-7380.2020.02.001
[20] 郭 斌. 栎属近缘种指纹图谱构建及遗传结构[J]. 北京林业大学学报, 2018, 40(4):10-18.
[21] 毛秀红, 郑勇奇, 孙百友, 等. 基于SSR的刺槐无性系遗传多样性分析和指纹图谱构建[J]. 林业科学, 2017, 53(10):80-89. doi: 10.11707/j.1001-7488.20171009
[22] 郑纪伟, 教忠意, 窦全琴, 等. 利用荧光SSR标记构建含笑种质指纹图谱[J]. 分子植物育种, 2018, 16(14):4705-4714.
[23] 段一凡, 王贤荣, 梁丽丽, 等. 桂花品种SSR荧光指纹图谱的构建[J]. 南京林业大学学报:自然科学版, 2014, 38(S):1-6.
[24] Li J, Zeng Y, Shen D, et al. Development of SSR markers in Hickory (Carya cathayensis Sarg.) and their transferability to other species of Carya[J]. Current Genomics, 2014, 15(5): 357-379. doi: 10.2174/138920291505141106103734
[25] Woeste K, Burns R, Rhodes O, et al. Thirty polymorphic nuclear microsatellite loci from black walnut[J]. The Journal of Heredity, 2002, 93(1): 58-60. doi: 10.1093/jhered/93.1.58
[26] 张智勇. 核桃EST-SSR引物开发及其在喙核桃保育遗传学中的应用[D]. 北京: 北京林业大学, 2013.
[27] 齐建勋, 王克建, 吴春林, 等. 核桃EST-SSR标记的开发[J]. 农业生物技术学报, 2009, 17(5):872-876. doi: 10.3969/j.issn.1674-7968.2009.05.022
[28] 王 琼, 郑勇奇, 周建仁. 分子标记在林业植物新品种鉴别中的应用及前景[J]. 林业科学, 2008, 44(6):180-182. doi: 10.3321/j.issn:1001-7488.2008.06.032
[29] Pollegioni P, Woeste K, Mugnozza G S, et al. Retrospective identification of hybridogenic walnut plants by SSR fingerprinting and parentage analysis[J]. Molecular Breeding, 2009, 24(4): 321-335. doi: 10.1007/s11032-009-9294-7
[30] Liesebach H, Schneck V, Ewald E. Clonal fingerprinting in the genus Populus L. by nuclear microsatellite loci regarding differences between sections, species and hybrids[J]. Tree Genetics Genomes, 2010, 6(2): 259-269. doi: 10.1007/s11295-009-0246-5
[31] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: features and applications[J]. Trends in Biotechnology, 2005, 23(1): 48-55. doi: 10.1016/j.tibtech.2004.11.005
[32] Gasic K, Han Y, Kertbundit S, et al. Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species[J]. Molecular Breeding, 2009, 23: 397-411. doi: 10.1007/s11032-008-9243-x
[33] Yadav H K, Ranjan A, Asif M H, et al. EST derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera[J]. Tree Genetics & Genomes, 2011, 7(1): 207-219.
[34] Zorrilla-Fontanesi Y, Cabeza A, Torres A M, et al. Development and bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily[J]. Molecular Breeding, 2011, 27(2): 137-156. doi: 10.1007/s11032-010-9417-1
[35] Savadi S B, Fakrudin B, Nadaf H L, et al. Transferability of sorghum genic microsatellite markers to peanut[J]. American Journal of Plant Science, 2012, 3(9): 1169-1180. doi: 10.4236/ajps.2012.39142
[36] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3): 314-324.