• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛竹NLP转录因子鉴定及其响应氮素的表达模式

袁婷婷 朱成磊 李紫阳 宋新章 高志民

引用本文:
Citation:

毛竹NLP转录因子鉴定及其响应氮素的表达模式

    通讯作者: 高志民, gaozhimin@icbr.ac.cn
  • 中图分类号: S718.46

Identification of NLP Transcription Factors of Phyllostachys edulis and Their Expression Patterns in Response to Nitrogen

    Corresponding author: GAO Zhi-min, gaozhimin@icbr.ac.cn
  • CLC number: S718.46

  • 摘要: 目的 鉴定毛竹中NLP家族成员,为深入研究毛竹NLP分子调控机制奠定基础。 方法 采用生物信息学方法鉴定并系统分析毛竹NLP成员的分子特征,用实时荧光定量PCR (qPCR)技术检测毛竹NLP响应氮素的表达模式。 结果 毛竹中鉴定出10个NLP成员(PeNLP1~PeNLP10),其蛋白长度为714~963 aa,分子量为77.41~105.08 kDa,理论等电点介于5.36~6.25之间;亚细胞定位预测结果表明,除PeNLP9定位于叶绿体外,其余成员均定位于细胞核内。系统进化分析表明:PeNLPs分成3个组,各组成员分别为4、2、4个。PeNLPs均包含4个内含子,不同成员内含子的大小和位置存在一定的差异;PeNLPs内有共线性基因对6个,PeNLPs和OsNLPs之间有共线性基因对9个,且它们的Ka / Ks均小于1,说明其在进化上经历了纯化选择。组织特异性分析表明,有的PeNLPs呈组织特异性表达,有的则呈组成型表达。PeNLPs受到氮饥饿诱导表达,在1 h内PeNLP1的表达量显著上调,其它5个PeNLPs则显著下调(p < 0.01);对氮饥饿72 h后的毛竹进行复氮处理,在24 h内所有PeNLPs的表达量均显著或极显著上调(p < 0.05或p < 0.01)。 结论 毛竹中NLP家族有10个成员,各成员的分子特征和组织表达特异性存在一定的差异,PeNLPs的表达能够对氮饥饿作出快速响应,且在氮饥饿后复氮过程中显著上调表达,响应氮素的诱导。
  • 图 1  PeNLPs基因结构(A)及其编码蛋白保守基序(B)分析

    Figure 1.  Gene structure (A) and the conserved motifs (B) of the proteins encoded by PeNLPs

    图 2  NLP家族成员的系统发育分析

    Figure 2.  Phylogenetic analysis of NLP family members

    图 3  毛竹与水稻的NLP家族基因共线性分析

    Figure 3.  Collinearity analysis of NLP family genes between Ph. edulis and O. sativa

    图 4  毛竹不同组织中PeNLPs的表达分析

    Figure 4.  Expression analysis of PeNLPs in different tissues of moso bamboo

    图 5  氮饥饿过程中PeNLPs的表达分析

    Figure 5.  Expression analysis of PeNLPs during nitrogen starvation

    图 6  复氮过程中PeNLPs的表达分析

    Figure 6.  Expression analysis of PeNLPs during nitrogen resupply

    表 1  qPCR所用引物

    Table 1.  Primers used in qPCR

    引物名称
    Primer name
    序列 (5′-3′)   
    Sequence (5′-3′)   
    引物名称
    Primer name
    序列 (5′-3′)   
    Sequence (5′-3′)   
    PeNLP1-F TCGGCATTGCTCAGGAAACT PeNLP1-R TTGACCAAAGGAACCACCAG
    PeNLP2-F AAGATTGATTTGGTGTCATCGG PeNLP2-R CCTGTCAGCAAGTAAGTTGTTCG
    PeNLP3-F AACTACACGAGTGGAGCAAAGC PeNLP3-R GATCATTCATCAACGAGAACAGC
    PeNLP5-F TAACGGACATTGGATCTTCGA PeNLP5-R CAAGGAGTCCAGCACTGCCTTCT
    PeNLP8-F GTTTGGCATTGCTCAGGGAA PeNLP8-R AGTTTGACCATAGGAACCACCA
    PeNLP10-F AGGCTGTCGTCGCGGCC PeNLP10-R TCCTTGAACAAGCAAGCGCTGT
    PeTIP41-F AAAATCATTGTAGGCCATTGTCG PeTIP41-R ACTAAATTAAGCCAGCGGGAGTG
    下载: 导出CSV

    表 2  PeNLPs编码蛋白的基本特征

    Table 2.  Basic characteristics of the proteins encoded by PeNLPs

    基因
    Gene
    基因编号
    Gene number
    蛋白长度
    Protein length/aa
    分子量
    MW /kDa
    等电点
    pI
    亚细胞定位
    Subcellular location
    脂肪指数
    Aliphatic index
    亲水性值
    GRAVY
    PeNLP1 PH02Gene00833 901 100.00 5.36 细胞核 Nucleus 75.12 −0.386
    PeNLP2 PH02Gene03190 943 102.70 5.98 细胞核 Nucleus 77.33 −0.359
    PeNLP3 PH02Gene17818 963 105.08 5.72 细胞核 Nucleus 77.14 −0.373
    PeNLP4 PH02Gene22439 949 103.26 5.78 细胞核 Nucleus 78.59 −0.301
    PeNLP5 PH02Gene32426 841 92.43 6.25 细胞核 Nucleus 78.03 −0.409
    PeNLP6 PH02Gene35538 843 92.68 6.16 细胞核 Nucleus 77.27 −0.395
    PeNLP7 PH02Gene37611 875 97.04 6.23 细胞核 Nucleus 83.51 −0.344
    PeNLP8 PH02Gene44417 931 103.57 6.15 细胞核 Nucleus 76.14 −0.384
    PeNLP9 PH02Gene45890 714 77.41 6.03 叶绿体 Chloroplast 84.99 −0.169
    PeNLP10 PH02Gene46788 936 102.18 5.60 细胞核 Nucleus 81.42 −0.254
    下载: 导出CSV
  • [1] 刘奇峰, 李卓蓉, 吴江婷, 等. 不同氮素供给水平对84K杨幼苗碳氮代谢的影响[J]. 林业科学研究, 2019, 32(6):63-72.

    [2] 徐思瑜, 陈圣贤, 陈雨清, 等. 氮添加对混栽杉木-楠木叶性状的影响[J]. 林业科学研究, 2020, 33(3):184-192.

    [3]

    Raddatz N, Morales de Los Ríos L, Lindahl M, et al. Coordinated transport of nitrate, potassium, and sodium[J]. Frontiers in Plant Science, 2020, 11: 247. doi: 10.3389/fpls.2020.00247
    [4]

    Guan P, Ripoll J J, Wang R, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2419-2424. doi: 10.1073/pnas.1615676114
    [5]

    Konishi M, Yanagisawa S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19(1): 90. doi: 10.1186/s12870-019-1692-3
    [6]

    Yu L H, Wu J, Tang H, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation[J]. Scientific Reports, 2016, 6: 27795. doi: 10.1038/srep27795
    [7]

    Yan D, Easwaran V, Chau V, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis[J]. Nature Communications, 2016, 7: 13179. doi: 10.1038/ncomms13179
    [8]

    Alfatih A, Wu J, Zhang Z S, et al. Rice NIN-Like Protein 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency[J]. Journal of Experimental Botany, 2020, 71(19): 6032-6042. doi: 10.1093/jxb/eraa292
    [9]

    Liu K H, Niu Y, Konishi M, et al. Discovery of Nitrate-CPK-NLP signaling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316. doi: 10.1038/nature22077
    [10]

    Hu B, Jiang Z, Wang, W, et al. Nitrate-NRT1.1b-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants[J]. Nature Plants, 2019, 5(4): 401-413. doi: 10.1038/s41477-019-0384-1
    [11]

    Jagadhesan B, Sathee L, Meena H S, et al. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific reports, 2020, 10(1): 9368. doi: 10.1038/s41598-020-66338-6
    [12]

    Kumar A, Batra R, Gahlaut V, et al. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.)[J]. PLoS ONE, 2018, 13(12): e0208409. doi: 10.1371/journal.pone.0208409
    [13]

    Ge M, Wang Y, Liu Y, et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize[J]. The Plant Journal, 2020, 102(2): 353-368. doi: 10.1111/tpj.14628
    [14] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6):45-48.

    [15]

    Zou N, Huang L, Chen H, et al. Nitrogen form plays an important role in the growth of moso bamboo (Phyllostachys edulis) seedlings[J]. PeerJ, 2020, 8(6): e9938. doi: 10.7717/peerj.9938
    [16] 李静文, 刘晓颖, 李士坤, 等. 氮磷钾配比施肥对毛竹出笋及叶片生理特性的影响[J]. 西南农业学报, 2020, 33(12):2885-2890.

    [17]

    Wu Z Z, Ying Y Q, Zhang Y B, et al. Alleviation of drought stress in Phyllostachys edulis by N and P application[J]. Scientific Reports, 2018, 8: 228. doi: 10.1038/s41598-017-18609-y
    [18]

    Li Q, Peng C, Zhang J, et al. Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a moso bamboo forest[J]. Scientific Reports, 2021, 11: 5578. doi: 10.1038/s41598-021-84422-3
    [19] 陶晨悦, 邵珊璐, 史文辉, 等. 氮沉降对干旱胁迫下毛竹实生苗生物量和保护酶活性的影响[J]. 林业科学, 2019, 55(9):31-40.

    [20]

    Wu J, Zhang Z S, Xia J Q, et al. Rice NIN-Like Protein 4 plays a pivotal role in nitrogen use efficiency[J]. Plant Biotechnology Journal, 2021, 19(3): 448-461. doi: 10.1111/pbi.13475
    [21]

    Konishi M, Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signaling[J]. Nature Communications, 2013, 4: 1617. doi: 10.1038/ncomms2621
    [22]

    Mu X, Luo J. Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling[J]. Cellular and Molecular Life Sciences, 2019, 76(19): 3753-3764. doi: 10.1007/s00018-019-03164-8
    [23]

    Zhao H, Gao Z, Wang L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. Gigascience, 2018, 7(10): 1-12.
    [24]

    Knight V B, Serrano E E. Expression analysis of RNA sequencing data from human neural and glial cell lines depends on technical replication and normalization methods[J]. BMC Bioinformatics, 2018, 19(Supply 14): 412.
    [25]

    Fan C, Ma J, Guo Q, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2): e56573. doi: 10.1371/journal.pone.0056573
    [26]

    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [27]

    Peng Z H, Lu Y, Li LB, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4): 456-461. doi: 10.1038/ng.2569
    [28]

    Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155. doi: 10.1126/science.290.5494.1151
    [29]

    Marchive C, Roudier F, Castaings L, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4: 1713. doi: 10.1038/ncomms2650
    [30]

    Wu Z, Liu H, Huang W, et al. Genome-wide identification, characterization, and regulation of RWP-RK gene family in the nitrogen-fixing clade[J]. Plants (Basel), 2020, 9(9): 1178.
    [31]

    Konishi M, Yanagisawa S. Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants[J]. Biochemical and Biophysical Research Communications, 2011, 411(4): 708-713. doi: 10.1016/j.bbrc.2011.07.008
    [32]

    Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63: 153-182. doi: 10.1146/annurev-arplant-042811-105532
    [33]

    Liu M, Chang W, Fan Y, et al. Genome-wide identification and characterization of Nodule-Inception-Like Protein (NLP) family genes in Brassica napus[J]. International Journal of Molecular Science, 2018, 19(8): 2270. doi: 10.3390/ijms19082270
    [34]

    Zhang T T, Kang H, Fu L L, et al. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of Tryptophan Aminotransferase Related 2[J]. Plant Science, 2021, 303: 110771. doi: 10.1016/j.plantsci.2020.110771
    [35]

    Maeda Y, Konishi M, Kiba T, et al. A NIGT1-centred transcriptional cascade regulates nitrate signaling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9: 1376. doi: 10.1038/s41467-018-03832-6
    [36]

    Lin J S, Li X, Luo Z, et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11): 942-952. doi: 10.1038/s41477-018-0261-3
    [37]

    Para A, Li Y, Marshall-Colón A, et al. Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10371-10376. doi: 10.1073/pnas.1404657111
    [38]

    Cao H, Qi S, Sun M, et al. Overexpression of the maize zmnlp6 and zmnlp8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation[J]. Frontiers in Plant Science, 2017, 8: 1703. doi: 10.3389/fpls.2017.01703
    [39]

    Wang M, Hasegawa T, Beier M, et al. Growth and nitrate reductase activity are impaired in rice osnlp4 mutants supplied with nitrate[J]. Plant & Cell Physiology, 2021: 1-12.
    [40]

    Konishi M, Yanagisawa S. Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response[J]. The Plant Journal, 2010, 63(2): 269-282. doi: 10.1111/j.1365-313X.2010.04239.x
    [41]

    Suzuki W, Konishi M, Yanagisawa S. The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor[J]. Plant Signaling & Behavior, 2013, 8(10): e25975.
    [42]

    Luo J, Zhou J, Li H, et al. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess[J]. Tree Physiology, 2015, 35(12): 1283-1302. doi: 10.1093/treephys/tpv091
  • [1] 袁婷婷朱成磊杨克彬宋新章高志民 . 毛竹硝态氮转运蛋白家族PeNPFs基因鉴定及其表达特性分析. 林业科学研究, 2021, 34(3): 1-12. doi: 10.13275/j.cnki.lykxyj.2021.03.001
    [2] 倪霞曹永慧周本智鲁小珍周燕 . 干旱处理对毛竹光响应的影响:基于4种模型比较分析. 林业科学研究, 2017, 30(3): 465-471. doi: 10.13275/j.cnki.lykxyj.2017.03.015
    [3] 曹永慧周本智葛晓改倪霞王小明 . 毛竹比叶质量时空变化及对截雨干旱的响应. 林业科学研究, 2019, 32(6): 31-39. doi: 10.13275/j.cnki.lykxyj.2019.06.005
    [4] 孙化雨娄永峰李利超赵韩生高志民 . 毛竹TIPs基因家族成员组织表达模式研究. 林业科学研究, 2016, 29(4): 521-528.
    [5] 施建敏郭起荣杨光耀 . 毛竹光合动态研究. 林业科学研究, 2005, 18(5): 551-555.
    [6] 施建敏郭起荣杨光耀 . 毛竹蒸腾动态研究. 林业科学研究, 2007, 20(1): 101-104.
    [7] 吴良如楼一平萧江华 . 笋竹两用林生产力因子数量化评价. 林业科学研究, 1992, 5(5): 536-541.
    [8] 洪顺山胡炳堂江业根 . 毛竹营养诊断的研究. 林业科学研究, 1989, 2(1): 15-24.
    [9] 胡炳堂洪顺山 . 毛竹施用硅肥的效应研究. 林业科学研究, 1990, 3(4): 368-374.
    [10] 陈金林张献义叶长青梁文焰张碧松李启鹏 . 毛竹林高产施肥技术探讨. 林业科学研究, 1996, 9(3): 323-327.
    [11] 单雪萌王思宁朱成磊高志民 . 毛竹 PeCPD 基因克隆与表达分析. 林业科学研究, 2019, 32(5): 58-66. doi: 10.13275/j.cnki.lykxyj.2019.05.008
    [12] 李雁群 . 毛竹活立竹竹杆创口的伤流. 林业科学研究, 1997, 10(1): 108-110.
    [13] 汪奎宏裘福庚蔡纫秋 . 毛竹主要营林措施技术经济效果分析. 林业科学研究, 1991, 4(1): 30-37.
    [14] 李正才傅懋毅姜景民杨校生肖基浒 . 毛竹天然林表型特征的地理变异研究. 林业科学研究, 2002, 15(6): 654-659.
    [15] 崔凯何彩云张建国廖声熙 . 毛竹茎秆组织速生的时空发育特征. 林业科学研究, 2012, 25(4): 425-431.
    [16] 彭镇华刘贯水李潞滨 . 磁珠富集法开发毛竹SSR标记引物. 林业科学研究, 2011, 24(6): 743-748.
    [17] 齐飞艳彭镇华胡陶高健 . 毛竹花期不同器官内源激素含量的变化. 林业科学研究, 2013, 26(3): 332-336.
    [18] 范春节王晖卢孟柱 . 毛竹小RNA高通量测序及病毒分析. 林业科学研究, 2014, 27(3): 335-340.
    [19] 王思宁孙化雨李利超杨意宏徐浩赵韩生高志民 . 毛竹PeDWF4基因克隆及表达模式分析. 林业科学研究, 2018, 31(5): 50-56. doi: 10.13275/j.cnki.lykxyj.2018.05.007
    [20] 曹永慧周本智倪霞葛晓改王小明 . 模拟干旱下毛竹叶片水势的动态变化. 林业科学研究, 2018, 31(4): 183-191. doi: 10.13275/j.cnki.lykxyj.2018.04.025
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  4181
  • HTML全文浏览量:  2403
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 录用日期:  2021-06-28
  • 网络出版日期:  2021-07-31
  • 刊出日期:  2021-10-20

毛竹NLP转录因子鉴定及其响应氮素的表达模式

    通讯作者: 高志民, gaozhimin@icbr.ac.cn
  • 1. 国际竹藤中心竹藤资源基因科学与基因产业化研究所,国家林业和草原局/北京市共建竹藤科学与技术重点实验室,北京 100102
  • 2. 浙江农林大学,浙江 杭州 311300

摘要:  目的 鉴定毛竹中NLP家族成员,为深入研究毛竹NLP分子调控机制奠定基础。 方法 采用生物信息学方法鉴定并系统分析毛竹NLP成员的分子特征,用实时荧光定量PCR (qPCR)技术检测毛竹NLP响应氮素的表达模式。 结果 毛竹中鉴定出10个NLP成员(PeNLP1~PeNLP10),其蛋白长度为714~963 aa,分子量为77.41~105.08 kDa,理论等电点介于5.36~6.25之间;亚细胞定位预测结果表明,除PeNLP9定位于叶绿体外,其余成员均定位于细胞核内。系统进化分析表明:PeNLPs分成3个组,各组成员分别为4、2、4个。PeNLPs均包含4个内含子,不同成员内含子的大小和位置存在一定的差异;PeNLPs内有共线性基因对6个,PeNLPs和OsNLPs之间有共线性基因对9个,且它们的Ka / Ks均小于1,说明其在进化上经历了纯化选择。组织特异性分析表明,有的PeNLPs呈组织特异性表达,有的则呈组成型表达。PeNLPs受到氮饥饿诱导表达,在1 h内PeNLP1的表达量显著上调,其它5个PeNLPs则显著下调(p < 0.01);对氮饥饿72 h后的毛竹进行复氮处理,在24 h内所有PeNLPs的表达量均显著或极显著上调(p < 0.05或p < 0.01)。 结论 毛竹中NLP家族有10个成员,各成员的分子特征和组织表达特异性存在一定的差异,PeNLPs的表达能够对氮饥饿作出快速响应,且在氮饥饿后复氮过程中显著上调表达,响应氮素的诱导。

English Abstract

  • 氮素是植物生长发育必需的大量营养元素之一 [1-2]。近些年,氮的利用效率倍受关注,涉及氮的吸收、运输与同化等方面,其中,氮的吸收转运已成为研究的热点。研究表明,RWP-PK家族中的NLP (NIN-like protein)转录因子在响应氮饥饿、氮信号调节过程中处于中心地位[3]。NLP家族成员都具有RWP-RK和PB1两个典型的结构域,RWP-RK结构域具有与DNA结合的功能,PB1结构域具有蛋白相互作用的功能[4]。拟南芥(Arabidopsis thaliana)中NLPs与硝酸盐顺式作用元件NRE (Nitrate-responsive elements)结合调控硝酸盐响应相关基因的表达,进而影响拟南芥的生长发育[5],如过表达拟南芥NLP7能够通过增强氮和碳的同化,促进植物生长[6],NLP8则对于硝酸盐促进种子萌发至关重要[7]。过表达OsNLP1促进水稻(Oryza sativa L.)生长,提高水稻氮素利用率和产量[8]。另外,在植物Nitrate-CPK-NLP (硝酸盐-Ca2+传感蛋白激酶-NLP)信号通路中,NLPs协调植物对硝酸盐信号的感知和对下游转录因子、转运蛋白、碳氮代谢过程的调控[9],在氮饥饿、氮磷互作以及根系生长过程中发挥着重要作用[10]

    随着测序技术的快速发展,已经对包括水稻[11]、拟南芥[7]、小麦(Triticum aestivum L.) [12]和玉米(Zea mays L.) [13]等多种植物中NLPs进行全基因组鉴定和功能研究。竹子作为禾本科(Gramineae)的特殊类群,尤其是木本竹,因其生长快、材性好,已成为缓解木材供给不足的重要替代材料。毛竹(Phyllostachys edulis (Carrière) J. Houz.)林占我国竹林总面积的72.96%[14],是最具代表性的木本竹种。氮肥显著影响毛竹幼苗的生长[15]、笋的品质和产量及其叶片生理特性[16],施用氮肥已成为竹林增产的重要手段。未施氮肥的情况下,氮沉降在很大程度上补充了土壤氮,提高了毛竹光合作用效率[17-18]、增加生物量、增强抗性[19]。然而,毛竹吸收转运氮的机制尚未见报道,其中,NLP家族成员的调控作用更不清楚。本文以毛竹为研究对象,在全基因组水平系统分析NLP分子特征的基础上,研究在氮饥饿过程以及复氮后NLP基因的表达模式,以期为深入研究其功能提供参考。

    • 将毛竹种子播种于基质(泥炭∶蛭石 = 7∶3)中,置于25℃的温室中培养,待实生苗生长至2个月时,选择株高和长势一致的植株,将种子去掉,根系用去离子水洗净,置于全营养液中培养2周,然后转入缺氮木村B营养液[20]中进行氮饥饿处理,并于氮饥饿72 h后,用6 mmol·L−1的硝酸盐(KNO3和KCl配置而成)进行复氮处理。分别于氮饥饿处理以及复氮处理0、0.5、1、2、4、8、12和24 h取植株的根系,用液氮处理后保存于−80℃,用于RNA提取,进行定量PCR (qPCR)分析,氮饥饿0 h和72 h的植株分别作为对照,试验采用3次生物学重复。

    • 分别从Rice Genome Annotation Project (http://ric-e.plantbiology.msu.edu/)和Tair (https://www.arabidopsis.org/index.jsp)数据库下载水稻和拟南芥的NLP转录因子的CDS和氨基酸序列[11,21],作为诱饵序列在毛竹基因组数据库BambooGDB (http://bamboo.bamboogdb.org/)中进行BlastP、BlastN (e-value = 1 e−10)比对,获取毛竹NLP的候选基因,对获得的候选序列在PFAM数据库(http://pfam.xfam.org)逐条进行蛋白保守结构域的鉴定和分析,仅保留具有编码完整保守结构域的序列,并进行基因命名。

    • 使用TBtools工具绘制毛竹NLP的基因结构图;使用ProtParam (http://web.expasy.org/prot-param/)和Plant-mPLoc算法(http://www.csbio.sjtu.edu.cn)分析PeNLPs编码蛋白的基本理化特性及亚细胞定位;使用MEME Version 5.1.0 (http://meme-suit-e.org/tools/meme)分析毛竹NLP蛋白的保守基序。

    • 使用MEGA 7.0软件的Clustal W对毛竹、水稻、拟南芥、玉米、毛果杨(Populus trichocarpa (Torr. & Gray))、二穗短柄草(Brachypodium distachyon (L.) Beauv.)和蒺藜苜蓿 (Medicago truncatula Gaertn.)的NLP蛋白序列[22]进行同源比对分析,用邻接法(Neighbor-joining method)、bootstrap试验重复1000次、其它参数设置为默认值构建系统进化树。

    • 利用本实验室的毛竹26个不同组织转录组测序(RNA-Seq)数据(NCBI的SRA号为:SRS1847073、SRS1847072、SRS1847071、SRS1847070、SRS1847069、SRS1847068、SRS1847067、SRS1847066、SRS1847065、SRS1847064、SRS1847063、SRS1847062、SRS1847061、SRS1847060、SRS1847059、SRS1847058、SRS1847057、SRS1847056、SRS1847055、SRS1847054、SRS1847053、SRS1847052、SRS1847051、SRS1847050、SRS1847049、SRS1847048) [23],构建毛竹NLP基因的组织表达谱,以Log2(FPKM+1)的值进行表达量热图绘制[24]

      根据毛竹NLP基因序列,使用Primer Premier 5.0软件设计特异定量引物,由北京博迈德基因技术有限公司合成(表1)。用于qPCR分析的cDNA是由1.1节中经过氮饥饿以及复氮处理不同时间的毛竹根系,通过TRIzol (Invitrogen)法从中提取RNA,用Promega反转录试剂盒合成cDNA。qPCR实验在qTOWER2.2系统上进行,体系参照Roche Light Cycler® 480 SYBR Green I Master kit试剂盒,程序为95℃预变性10 min;95℃变性10 s,60℃解链10 s,40个循环。选择PeTIP41作为内参基因[25],相对表达量的数据处理用2−ΔΔCT[26]

      表 1  qPCR所用引物

      Table 1.  Primers used in qPCR

      引物名称
      Primer name
      序列 (5′-3′)   
      Sequence (5′-3′)   
      引物名称
      Primer name
      序列 (5′-3′)   
      Sequence (5′-3′)   
      PeNLP1-F TCGGCATTGCTCAGGAAACT PeNLP1-R TTGACCAAAGGAACCACCAG
      PeNLP2-F AAGATTGATTTGGTGTCATCGG PeNLP2-R CCTGTCAGCAAGTAAGTTGTTCG
      PeNLP3-F AACTACACGAGTGGAGCAAAGC PeNLP3-R GATCATTCATCAACGAGAACAGC
      PeNLP5-F TAACGGACATTGGATCTTCGA PeNLP5-R CAAGGAGTCCAGCACTGCCTTCT
      PeNLP8-F GTTTGGCATTGCTCAGGGAA PeNLP8-R AGTTTGACCATAGGAACCACCA
      PeNLP10-F AGGCTGTCGTCGCGGCC PeNLP10-R TCCTTGAACAAGCAAGCGCTGT
      PeTIP41-F AAAATCATTGTAGGCCATTGTCG PeTIP41-R ACTAAATTAAGCCAGCGGGAGTG
    • 在毛竹新基因组数据[23]中共鉴定出10个编码完整NLP蛋白的基因,命名为PeNLP1PeNLP10PeNLPs的编码区长度为2145~2892 bp,编码蛋白长度为714~963 aa,分子量(Molecular weight, MW)为77.41~105.08 kDa,理论等电点(Theoretical isoelectric point, pI)为5.36~6.25,亚细胞定位预测除PeNLP9位于叶绿体外,其余成员均位于细胞核内(表2)。

      表 2  PeNLPs编码蛋白的基本特征

      Table 2.  Basic characteristics of the proteins encoded by PeNLPs

      基因
      Gene
      基因编号
      Gene number
      蛋白长度
      Protein length/aa
      分子量
      MW /kDa
      等电点
      pI
      亚细胞定位
      Subcellular location
      脂肪指数
      Aliphatic index
      亲水性值
      GRAVY
      PeNLP1 PH02Gene00833 901 100.00 5.36 细胞核 Nucleus 75.12 −0.386
      PeNLP2 PH02Gene03190 943 102.70 5.98 细胞核 Nucleus 77.33 −0.359
      PeNLP3 PH02Gene17818 963 105.08 5.72 细胞核 Nucleus 77.14 −0.373
      PeNLP4 PH02Gene22439 949 103.26 5.78 细胞核 Nucleus 78.59 −0.301
      PeNLP5 PH02Gene32426 841 92.43 6.25 细胞核 Nucleus 78.03 −0.409
      PeNLP6 PH02Gene35538 843 92.68 6.16 细胞核 Nucleus 77.27 −0.395
      PeNLP7 PH02Gene37611 875 97.04 6.23 细胞核 Nucleus 83.51 −0.344
      PeNLP8 PH02Gene44417 931 103.57 6.15 细胞核 Nucleus 76.14 −0.384
      PeNLP9 PH02Gene45890 714 77.41 6.03 叶绿体 Chloroplast 84.99 −0.169
      PeNLP10 PH02Gene46788 936 102.18 5.60 细胞核 Nucleus 81.42 −0.254
    • 基因结构分析发现,PeNLPs均包含4个内含子,但不同基因内含子的大小和位置存在一定的差异。依据系统进化关系,PeNLPs可分为3个组,同一个组内的基因成员具有相似的结构以及内含子长度和位置,如II组中PeNLP2PeNLP3的基因结构高度相似,PeNLP2的最短内含子和最长内含子分别为134 bp和740 bp,PeNLP3的最短内含子和最长内含子分别为133 bp和730 bp,二者非常接近,组与组之间的基因结构差异明显(图1A)。

      图  1  PeNLPs基因结构(A)及其编码蛋白保守基序(B)分析

      Figure 1.  Gene structure (A) and the conserved motifs (B) of the proteins encoded by PeNLPs

      蛋白保守基序分析表明:PeNLPs共有20个保守基序(图1B),其中,Motif 1~Motif 7、Motif 9、Motif 12、Motif 13为共有基序,Motif 19、Motif 14和Motif 16分别为Ⅰ、Ⅱ和Ⅲ组成员所特有。另外,Ⅰ组成员缺少Motif 11,Ⅱ组成员缺少Motif 8和Motif 17,Ⅲ组成员缺少Motif 15、Motif 18和Motif 20。

    • 为了解不同物种间NLP的进化关系,预测PeNLPs的潜在功能,构建了基于毛竹、水稻、拟南芥、玉米、毛果杨、二穗短柄草和苜蓿NLP蛋白氨基酸序列的系统进化树。结果表明:60个NLPs分成了3个组(Ⅰ、Ⅱ和Ⅲ),双子叶植物NLPs主要分布在Ⅰ组中,而单子叶植物NLPs则在3个组中均有分布(图2),这与前人的研究一致[22]。PeNLPs分布在Ⅰ、Ⅱ和Ⅲ的成员个数分别为4、2、4个,这和其它单子叶植物成员在3个组的个数分布情况相似。在每个组中,多数PeNLPs与水稻NLPs聚类在较近的分支,其次是二穗短柄草的NLPs,这说明毛竹与水稻、二穗短柄草在进化上的亲缘关系较近,而与拟南芥、毛果杨等双子叶植物的亲缘关系较远。

      图  2  NLP家族成员的系统发育分析

      Figure 2.  Phylogenetic analysis of NLP family members

      共线性分析发现,9个PeNLPs存在共线关系,并组成6个共线性基因对,即PeNLP1PeNLP8PeNLP2PeNLP3PeNLP4PeNLP7PeNLP4PeNLP10PeNLP5PeNLP6PeNLP7PeNLP10 (图3A),且共线性基因的Ka/Ks均小于1 (图3B),说明这些基因在进化中经历了纯化选择。此外,有9个PeNLPs与5个OsNLPs之间存在共线性,具有共线关系的PeNLPs数量多于OsNLPs数量,这可能与毛竹进化过程中发生过基因组加倍事件有关[27]

      图  3  毛竹与水稻的NLP家族基因共线性分析

      Figure 3.  Collinearity analysis of NLP family genes between Ph. edulis and O. sativa

    • 利用毛竹转录组数据,对PeNLPs的组织表达特异性进行分析。结果表明:PeNLPs部分成员的表达具有组织特异性(图4),如PeNLP2在叶片、叶鞘和箨片中特异表达,PeNLP5PeNLP9分别在叶鞘和0.1 cm根中特异表达,推测它们是在特定的部位发挥功能;还有部分成员呈组成型表达,如PeNLP10在26个组织中均检测到表达,且在各个组织中的表达量变化不大,推测它在毛竹各个部位及各个部位的不同生长阶段均能发挥作用。然而,有些成员在26个组织中检测不到表达,如PeNLP6PeNLP7,推测它们可能为诱导表达型,或是存在功能冗余基因。

      图  4  毛竹不同组织中PeNLPs的表达分析

      Figure 4.  Expression analysis of PeNLPs in different tissues of moso bamboo

      此外,PeNLPs在同一组织的不同生长阶段的表达呈现一定的差异性。在根中,部分PeNLPs的表达呈现出在生长早期表达高于生长后期的规律,如PeNLP1PeNLP3PeNLP8在0.1 cm根中的表达量高于0.5 cm、成熟根等其它生长阶段的根中的表达量,在0.2 m笋中的表达量高于1.5、6.7 m等其它高度的笋中的表达量,这可能是由于这3个成员主要在根和笋的生长早期发挥作用;但PeNLP4却呈相反的表达趋势,其在3.0 m和6.7 m笋中的表达量高于在0.2 m和1.5 m笋中的表达量。由此表明,这些PeNLPs可能在根或笋的不同生长阶段具有不同的调控作用。

    • 氮饥饿及复氮过程中PeNLPs的表达模式分析表明:在氮饥饿处理过程中,PeNLPs的表达呈现不同程度的波动变化,这说明不同时间PeNLPs对氮饥饿的响应程度不同,且各个成员之间存在一定的差异(图5)。在施加氮饥饿1 h内,PeNLP1的表达量迅速上升,且达到极显著水平,PeNLP2PeNLP3PeNLP5PeNLP8PeNLP10则极显著下降(p < 0.01),表明PeNLPs对氮饥饿的响应均较迅速。随着氮饥饿的施加,在1~24 h过程中,PeNLP1的表达为先下降、后上升、再下降,至氮饥饿24 h时的表达量与开始氮饥饿时(0 h)的表达量接近;PeNLP2PeNLP5PeNLP10的表达为先上升、后下降、再上升,至氮饥饿24 h时,PeNLP5极显著高于0 h,PeNLP2PeNLP10则极显著低于0 h (p < 0.01);PeNLP3PeNLP8呈先上升、后下降、再上升、再下降、再上升的波动表达模式,至氮饥饿24 h时,PeNLP3的表达极显著低于0 h,PeNLP8的表达极显著高于0 h (p < 0.01)。由此推测,毛竹对氮饥饿过程的响应可能存在不同的信号通路,PeNLPs各成员通过不同的表达来参与毛竹对氮饥饿的响应。

      图  5  氮饥饿过程中PeNLPs的表达分析

      Figure 5.  Expression analysis of PeNLPs during nitrogen starvation

      对氮饥饿72 h后的毛竹进行复氮处理,在复氮过程中PeNLPs的表达量均显著或极显著上调(p < 0.05或p < 0.01),说明复氮促进了PeNLPs的表达,但呈现不同的波动变化(图6)。如PeNLP1PeNLP3PeNLP8PeNLP10呈现相似的变化趋势,即先上升、后下降,再上升、再下降;PeNLP2PeNLP5呈现相似的变化趋势,即先上升、后下降,再上升、再下降,再上升、后下降。PeNLP1PeNLP2PeNLP3PeNLP5PeNLP10的表达量基本是在复氮处理后12 h达到峰值,在处理后24 h较12 h都显著下降,而PeNLP8则是在处理后24 h达到峰值,较处理后12 h显著上升,说明它们的表达可能存在昼夜节律,各个成员响应硝酸盐表达的波动差异,表明不同PeNLPs对硝酸盐的响应可能具有不同的信号通路。

      图  6  复氮过程中PeNLPs的表达分析

      Figure 6.  Expression analysis of PeNLPs during nitrogen resupply

    • 本研究基于毛竹新基因组数据,共鉴定到10个毛竹NLP基因家族成员,比水稻(6个)、玉米(9个)、二穗短柄草(7个)和苜蓿(5个)等单子叶植物中成员数量多,而少于双子叶植物毛果杨(14个)中的成员,这可能与不同物种在进化过程中经历的基因组加倍或基因丢失有关[28]。亚细胞定位预测10个PeNLPs有9个定位在细胞核中,这符合转录因子的特性,而PeNLP9定位在叶绿体中,这可能是NLP家族的核穿梭现象[29],与拟南芥、水稻NLP的核穿梭特征[20]类似。系统进化分析表明,60个NLPs分为3个组,各组成员功能相似但也出现了一定的功能分化,如Ⅰ组中拟南芥和水稻成员主要参与硝酸盐信号转导和氮素营养调控植物生长发育[30],Ⅱ组成员中AtNLP8呈组成型表达,当硝酸盐存在时,AtNLP8可以直接结合到编码ABA分解代谢酶基因CYP707A2的启动子区,降低种子中ABA含量并促进种子萌发[7];Ⅲ组中成员个数相对较多,AtNLP6/7能够结合硝酸盐响应基因ANR1CIPK8的启动子,调控氮吸收、同化和信号转导过程[31]。虽然可以根据已知功能的同源蛋白预测PeNLPs的功能,但要对PeNLPs在氮素利用率(NUE)中的作用给出明确的结论,尚有待于实验验证。

      氮素利用效率受氮感知、吸收、转运、同化和再利用效率等因素的影响,其调控是一个复杂的网络,其中,NLP转录因子是硝态氮吸收利用的核心转录因子[32]。拟南芥中AtNLP6/7通过感知硝酸盐信号后活性被诱导,进而结合到高亲和力硝酸盐转运基因蛋白(NRT2.1)、亚硝酸还原酶(NIR1)等基因的启动子区和硝酸还原酶(NIA1)基因的3′侧翼区的氮应答DNA元件(NRE)上[33]。AtNLP6/7还可以和TCP20相互作用形成异源二聚体,正向调控氮同化及氮信号途径中的基因NRT1.1NIA1NIA2的表达,参与硝酸盐的同化和信号传递[34],此外,NLPs还能靶向LBD37-39和NIGT1两类转录因子基因,通过触发二级转录事件协同响应硝酸盐过程[35]。蒺藜苜蓿MtNLP1在细胞核中与MtNIN互作,阻碍MtNIN激活CRE1NF-YA1,进而抑制了根瘤菌感染以及节的形成[36]。另外,作为转录因子,NLP也受到其它转录因子的调控,如拟南芥AtNLP3受到bZIP1的“非绑定”的调控方式来快速响应硝酸盐[37]

      NLPs除与上游的转录因子互作、下游基因结合来参与调控响应硝酸盐外,还通过自身表达的变化来响应氮饥饿及复氮诱导过程。在毛竹根中PeNLPs的表达对氮饥饿作出快速反应,如在氮饥饿1 h时,PeNLP1的表达量上升至对照的30倍,而PeNLP3的表达量则降低至对照的0.2倍,这与硝酸盐处理玉米时ZmNLPs的表达变化趋势相类似[38]。而在氮饥饿后复氮处理过程中,所有PeNLPs的表达均显著上调,说明硝酸盐诱导PeNLPs的表达,这与前人在水稻、拟南芥和玉米等物种中的研究结果一致[39]。此外,依据拟南芥中的NRE元件以及水稻中鉴定的NRE-like元件,对PeNLPs的下游靶基因进行预测,结果表明:毛竹NPF家族的PeNPF2.4PeNPF2.5PeNPF2.7PeNPF4.1PeNPF4.6PeNPF6.2PeNPF6.5PeNPF6.8PeNPF8.19的启动子区有TGACCC…N…AAGAG序列[8,40],推测它们可能是PeNLPs的靶基因,但还有待于进一步验证。目前,对于NLPs的认知主要是基于拟南芥、水稻和豆类[41]等草本植物,而对于木本植物NLPs的功能验证鲜有报道,木本植物的生长需要大量的氮[42],且多年生长处于复杂的环境中,它们可能比草本植物具有更加复杂的调控网络,在氮饥饿及复氮处理过程中,PeNLPs表达的波动变化表明其参与调控的复杂性。因此,要揭示非草非木的竹子中NLPs的功能,尚需更广泛的深入研究。

    • 本研究从毛竹中鉴定出10个NLP家族成员(PeNLP1~ PeNLP10),依据蛋白序列差异它们可分成3个组,分别具有4、2、4个成员。PeNLPs在毛竹各个组织的生长早期呈现高表达,这可能与各组织早期快速生长需要大量的氮素有关。氮素诱导PeNLPs的表达,在氮饥饿和复氮过程中呈现波动变化模式,表明毛竹对氮饥饿过程的响应可能存在不同的信号通路,PeNLPs各成员通过不同的表达来参与毛竹对氮饥饿的响应。研究结果为深入探索PeNLPs的功能,解析其调控分子机制奠定了基础。

参考文献 (42)

目录

    /

    返回文章
    返回