• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非寄主挥发物对针叶树小蠹虫作用的研究进展

崔丽贤 张真 黄大庄

引用本文:
Citation:

非寄主挥发物对针叶树小蠹虫作用的研究进展

  • 基金项目:

    国家973项目(2002CB111400),"十一五"林业科技支撑计划(2006BAD08A192)

  • 中图分类号: S763

Research Progress in the Effects of Non-host Volatiles to Conifer-inhabiting Bark Beetles

  • CLC number: S763

  • 摘要: 针叶树小蠹虫不仅能通过信息化学物质识别和回避非寄主生境,而且能识别非寄主树种和不适寄主树。非寄主挥发物,尤其是6碳乙醇等绿叶气体和一些8碳醇等树皮挥发物是代表着非寄主的重要气味信号,在针叶树小蠹虫寻找寄主的过程中有重要意义。本文分别对绿叶气体和非寄主树皮挥发物等的研究基础、小蠹虫对非寄主的回避、影响挥发物释放的因素、非寄主挥发物的采集分析、生物测定方法和非寄主挥发物作用的生态学及进化意义等方面的研究现状和进展进行了综述,认为小蠹虫能在混交林中找到寄主不是单因素决定的,是受多因素影响的结果。非寄主挥发物在针叶树小蠹虫的管理中具有广阔的应用前景。
  • [1]

    Wood S L. The Bark and Ambrosia Beetles (Coleoptera:Scolytidae) of North and Central America: A Taxonomic Monograph .Great Basin Natural Memograph, Brigham Young University Provo, Utah, 1982, no 6
    [2]

    Kelley S T, Farrel B D. Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae) [J]. Evolution, 1998, 52:1731-1743
    [3]

    Sequeira A S, Normark B B, Farrell B D. Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles . Proceedings of the Royal Society of London (B), 2000, 267:2359-2366
    [4]

    Dethier V G. Mechanism of host-plant recognition [J]. Entomologia Experimentalis et Applicata, 1982, 31:49-56
    [5]

    Visser J H. Host odor perception in phytophagous insects [J]. Annual Review of Entomology, 1986, 31:121-144
    [6]

    Dobson H E M. Floral volatiles in insect biology. Insect Plant Interactions[M], vol. 5.Bernays E A. CRC Press. Boca Raton, Florida, USA,1994: 47-81
    [7]

    Bernays E A. Plant-insect interactions-a synthesis . Abstract Book I. XXI-International Congress of Entomology. August. International Congress of Entomology, Brazil, 2000: Vlll-Xlll.20-26
    [8]

    Atkins M D. Behavioral variation among scolytids in relation to their habitat [J]. Canadian Entomologist, 1966, 98:285-288
    [9]

    Raffa K F, Benyman A A. Interacting selective pressures in conifer bark beetle systems: a basis for reciprocal adaptations[J] American Naturalist, 1987, 129: 234-262
    [10]

    Byers J A. Host tree chemistry affecting colonization in bark beetles[M]// Carde R T, Bell W J. Chemical Ecology of Insects 2. Chapman and Hall, New Yark, 1995:154-213
    [11]

    Borden J H. Disruption of semiochemical-mediated aggregation in bark beetles [M]// Carde R T, Minks A K. Pheromone Research:New Directions,1997:421-438
    [12]

    Schlyter F, Birgersson Cz. Forest Beetles[M]// Hardic R J,Minks A. Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CAB International, Wallingford, UK,1999: 113-148
    [13]

    Petersonnjk H E. Squash legal and ulartrichome volatile: identification and influence on behavior of female pickleworm moth Diaphania nitidalis[J]. Chemical Ecology, 1994, 20:2099-2109.
    [14]

    Paulwp J. Plant volatiles as a defense against insect herbivores[J]. Plant Physiology, 1999,121:325-331
    [15]

    Muller T L. Volatile organic compounds emitted from beech leaves[J]. Phytochemistry, 1996,43:759-762
    [16] 杜家纬.植物-昆虫间的化学通讯及其行为控制[J]. 植物生理学报,2001,27(3):193-200

    [17]

    Boren J H, Bennett R B, Acontinuously recording flight mile for investigating the effects of volatile substance on the flight of the red insect[J]. Ecolentomol,1969, 62(4):782-785
    [18]

    Byers J A. An encounter rate model of bark beetle populations searching at random for susceptible host trees[J]. Ecological Model,1996, 91:57-66
    [19]

    Zhang Q H. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer bark beetles . Ph.D. Thesis (Agraria 264). Swedish University of Agricultural Sciences. Alnarp, Sweden, 2001
    [20] 陈 辉,李宗波.植物挥发性化合物在小蠹虫寄主选择中的作用[J]. 福建林学院学报,2006,26(1):87-91

    [21]

    Zhang Q H, Birgerss G., Zhu J W, et al.. Leaf volatiles from nonhost deciduous trees:variation by tree species, season,and temperature and electrophysiological activity in Ips typographus[J].Journal of Chemical Ecology, 1999a, 25(8):1923-1943
    [22]

    Zhang Q H, Schlyter F, Anderson P. Green leaf volatiles interrupt pheromone response of spruce bark beetle, Ips typographus [J]. Journal of Chemical Ecology, 1999b, 25(12):2847-2861
    [23]

    Wilson L M, Borden J H, Gries R, et al.. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera:Scolytidae) [J]. Journal of Chemical Ecology, 1996, 22: 1861-1875
    [24]

    Schlyter F, Zhang Q H, Anderson P, et al.. Electrophysiological and behavioural responses of pine shoot beetles, Tomicus piniperda and T. minor (Coleoptera:Scolytidae), to non-host leaf and bark volatiles[J]. The Canadian Entomologist, 2000, 132: 965-98
    [25]

    Wood D L.The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles[J]. Annual Review of Entomology,1982, 27: 411-446
    [26]

    Jactel H, van Halder I, Menassieu P, et al.. Non-host volatiles disrupt the response of the stenographer bark beetle Ips sexdentatus (Coleoptera: Scolytidae) to pheromone baited traps and maritime pine log[J].Integrated Pest Management Reviews, 2001, 6:197-207
    [27]

    Zhang Q H, Schlyter F, Birgersson G. Bark volatiles from non-host deciduous trees of spruce bark beetle, Ips typographus(L.) (Coleoptera:Scolytidae): Chemical and electrophysiological analysis[J]. Chemoecology, 2000, 10: 69-80
    [28]

    ZHANG Long-wa, Nancy E G, SUN Jiang-hua. Electrophysiological and behavioral responses of Dendroctonus valens to non-host volatiles[J]. Annual Forest Science, 2007, 64: 267-273
    [29]

    Guerrero A, Feixas J, Pajares J, et al.. Semiochemically induced inhibition of behaviour of Tomicus destruens(Woll) (Coleoptera: Scolytidae)[J]. Naturwissenschaften, 1997, 84: 155-157
    [30]

    Huber D P W, Gries R, Borden J H, et al.. Two pheromones of coniferophagous bark beetles found in the bark of nonhost angiosperms[J]. Journal of chemical ecology, 1999, 25: 805-816
    [31]

    Huber D P W, Gries R, Borden J H, et al.. A survey of antennal responses by five species of conniferophagous bark beetles (Coleoptera:Scolytidae) to bark volatiles of six species of angiosperm trees[J]. Chemoecology, 2000a, 10: 103-113
    [32]

    Morewood W D, Simmonds K E, Gries R, et al.. Disruption by conophthotin of the kairomone response of sawyer beetles to bark beetle pheromones[J]. Journal of Chemical Ecology, 2003, 29(9): 2115-2129
    [33]

    Byers J A. Attraction of bark beetles,Tomicus piniperda,Hylurgops palliates,and Trypodendron domesticum and other insects to short-chain alcohols and monoterpenes[J]. Journal of Chemical Ecology, 1992, 18(12): 2385-2402
    [34]

    Zhang Q H, Liu G T, Schlyter F, et al.. Olfactory response of Ips duplicatus to nonhost leaf and bark volatiles in Inner Mongolia, China[J]. Journal of Chemical Ecology, 2001, 27: 955-1009
    [35]

    Ross D W, Datermen G E. Efficacy of antiaggregation pheromone for reducing douglas-fir beetle infestation in high risk stands[J]. The Canadian Entomologist, 1995,127:805-811
    [36]

    Wood D L. The role of pheromones, kairomones, and and allomones in the host selection and colonization of bark beetles[J]. Annual Review of Entomology, 1982, 27:411-446
    [37] 杨群芳,周祖基,李 庆.植物精油对云南松纵坑切梢小蠹的驱避活性研究[J].西南农业大学学报, 2003, 25(4): 357-3591

    [38]

    Gries G. Prospects of new semiochemicals and technologies. Application of Semiochemical for Management of Bark Beetle infestations //Salom S M,Hobson K R. USDA Forest Service, General Technical Report. INT-GTR-318,1995:44-47
    [39]

    Kohnle U. Host and non-host odour signals governing host selection by the pine shoot beetle, Tomicus piniperda and the spruce bark beetle, Hylurgops palliatus (Col., Scolytidae) [J]. Journal of Applied Entomology, 2004, 128(9-10):588-592
    [40]

    Dickens J C, Billings R F, Payne T L. Green leaf volatiles interrupt aggregation pheromone response in bark beetles infecting pines[J]. Experientia, 1992, 48: 523-524
    [41]

    Byers J A, Zhang Q H, Schlyter F, et al.. Volatiles from non-host birch tree inhabit pheromone response in spruce bark beetles[J]. Naturwissenschaften, 1998, 85: 557-561
    [42]

    Groot P D E. Green leaf volatiles inhabit response of red pine cone beetle Conophthorus resinosae(Coleopter, Scolytide) to a sex pheromone[J]. Natutwissenschaften,1999, 86(2): 81-85
    [43]

    Zhang Q H.Interruption of aggregation pheromones in Ips typographus (L.) (Col. Scolytidae) by non-host bark volatiles[J]. Agricultural and Forest Entommology, 2003, 5(2): 142-152.
    [44]

    Fettig C J, Borys R R, Dabney C P, et al.. Disruption of red turpentine attraction to baited traps by the addition of California five spined ips pheromone components[J]. Canadian Entomology, 2005, 137:748-752
    [45]

    Teranishi R, Kint S. Bioactive volatile compounds from plants: an overview [M]//Teranishi R. Buttery R G ,Sugisawa H. Bioactive Volatile Compounds from Plants. American Chemical Society, Washington,D.C., 1993: 1-5
    [46]

    Robinson T. The organic Constituents of Higher Plants[M], Cordus Press, North Amherst, MA, 1983
    [47]

    Metcalf R L, Metcalf E R. Plant Kairomones in Insect Ecology and Control[M]. Chapman &Hall, Academic Press, New York, 1992
    [48]

    Francke W, Bartels J, Meyer H, et al.. Semiochemicals from bark beetles:new results,remarks,and reflections[J]. Journal of Chemical Ecology, 1995, 21:1043-1063
    [49]

    Borden J H, Wilson I M, Gries R, et al.. Volatiles from the bark of trembling aspen, Populus tremuloides Michx.(Salicaceae) disrupt secondary attraction by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera:Scolytide)[J]. Chemoecology, 1998, 8: 69-75
    [50]

    Zhang Q H, Tollasch T, Schlyter F, et al.. Enantiospecific antennal response by bark beetle (Coleoptera:Scolytidae) to the spiroacetal E-conophthorin[J]. Journal of Chemical Ecology, 2002, 28:1839-1852
    [51]

    Tollsten L, Knudsen J T. Floral scent in deciduous Salix (Salicaceae)-acue determining the pollination system? [J] Plant Systematics and Evolution, 1992, 82: 229-237
    [52]

    Millar J G,Haynes K F. Methods in Chemical Ecology:Chemical Methods[M]. Kluwer. Norwel, 1998
    [53]

    Huber D P W, Borden, J H, Stastny M. Response of the pine engraver, Ips pini(Say) (Coleoptera:Scolytidae), to conophthorin and other angiosperm, bark volatiles in the avoidance of non-hosts[J]. Agricultural and Forest Entomology, 2001, 3:225-232
    [54]

    Payne T L. Pheromone perception. [M] // Birch M C. Pheromones. Elsevier-North Holland Publishers Amsterdam,1974: 31-61
    [55]

    Arn H, Stadler E, Rauscher S. The electroantennographic detector-a selective and sensitive tool in the gas chromatographic analysis of insect pheromones[J]. Zeitschrift fitr Naturforschung, 1975, 30c:722-725
    [56]

    Schroder L M. Olfactory recognition of nonhost aspen and birch by conifer bark beetle Tomicus pinipenta and Hylurgops palliates[J]. Journal of Chemical Ecology, 1992,18:1583-1593
    [57]

    Ross D W, Datermen G E. Efficacy of antiaggregation pheromone for reducing douglas-fir beetle infestation in high risk stands[J]. The Canadian Entomologist, 1995, 127:805-811
    [58]

    Leather S R, Watt A F. Insest-induced chemical changes in yang lodgpole pine(Pinus contorta); the effect of previous defoliation on oviposition, growth and survival of the pine beauty moth,Panolis flammea[J]. Ecological Entomology, 1987, 12: 275-281
    [59]

    Byers J A. Effect of mating on terminating aggregation during host colonization in the bark beetle, Ips paraconfusus[J] Journal of Chemical Ecology,1981a,7(1): 1135-1146
    [60] 杨群芳,周祖基,李 庆. 云南松纵坑切梢小蠹驱避作用测定方法初探[J]. 四川农业大学学报, 2003,21(3):226-229

    [61] 于诚铭,张庆贺. 落叶松八齿小蠹聚集信息素生物活性及分泌规律[J]. 东北林业大学学报,1988,16(4):1-7

    [62] 殷彩霞, 高竹林, 吕 军, 等. 纵坑切梢小蠹对云南松枝梢提取物趋性测试[J]. 昆虫知识,2002, 39(5):384-386

    [63]

    Ting D T, Turner D P, Weber J A. Factors controlling the emissions of monoterpenes and other volatile organic compounds [M]// Sharkey T D, Holland E A, Mooney H A. Trace Gas Emissions by Plants. Academic Press, Inc, San Diego,1991:93-119
    [64]

    Charron C S, Cantiliffe D J, Heath R R. Volatile emissions from plants[J]. Horticultural Review, 1995, 17:43-72
    [65]

    Guenther A B, Monson R K, Fall R. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development[J]. Journal of Guophysical Research, 1991, 96: 10799-10808
    [66]

    Dement W A, Tyson B J, Mooney H A. Mechanism of monoterpene volatilization in Salvia mellifera[J]. Phytochemistry, 1975, 14:2555-2557
    [67]

    Kamiysma K, Takai T, Yamanaka Y. Correlation between volatile substances released from plants and meteorological conditions . White E T, Hetherington P, Thiele B R. Proceedings from the International Clean Air Conferece, Science Publishers, Ann Arbor, Michigan,1978:365-372
    [68]

    Tingey D T, Manning M, Ratsch H C, et al.. Influence of light and temperature on monoterpene emission rates from slash pine[J]. Plant Physiology, 1980, 65:797-801
    [69]

    Yukouchi Y, Ambe Y. Factors affecting the emission of monoterpenes from red pine (Pinus densiflora)[J]. Plant Physiology, 1984, 75:1009-1012
    [70]

    Staudt M, Seufert G. Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.)[J]. Naturwissenschaften, 1995, 82:89-92
    [71]

    Gleizes M, Pauly G, Bernard-Dagan C, et al.. Effects of light on terpene hydrocarbon synthesis in pinus pinaster[J]. Physiologia Plantarum, 1980, 50:16-20
    [72]

    Hall G D, Langenheim J H. Temporal changes in the leaf monoterpenes of Sequoia sempervirens[J]. Biochemical systematics and Ecology, 1986, 14:61-69
    [73]

    Isidorov V A, Zenkevich I G, Ioffe B V. Volatile organic compounds in the Atmosphere of forests[J]. Atmospheric Environment, 1985, 19:1-8
    [74]

    Kimmerer T W, Kozlowski T T. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress[J]. Plant Physiology, 1982, 69:840-847
    [75]

    Pare P W, Tumlinson J H. Plant volatile signals in response to herbivore feeding[J]. Florida Entomologist, 1996, 79:93-103
    [76]

    Winer A M, Arey J, Atkinson R, et al.. Emission rates of organics from vegetation in Californias central valley[J]. Atmospheric Environment, 1992, 26A:2647-2659
    [77]

    Zhang Q H, Schlyter F. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles[J]. Agricultural and Forest Entomology, 2004, 6:1-19
    [78]

    Vite J P, Baader E. Present and future use of semiochemical in pest management of bark beetle[J]. Journal of Chemical Ecology, 1990, 16: 3031-3041
    [79]

    Byers J A, Zhang Q H, Birgersson G. Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape[J]. Natururwissenscenschaften, 2000, 87:503-507
    [80]

    Erbilgin N, Raffa K F. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetle to their aggregation pheromones[J]. Journal of Chemical Ecology, 2000, 26:2527-2548
    [81]

    Huber D P W, Borden J H. Protection of lodgepole pines from mass attack by mountain pine beetle, Dendroctonus ponderosae, with nonhost angiosperm volatiles and verbenone[J]. Entomologia Experimentalis et Applicata, 2001b, 99:131-141
    [82]

    Borden J H, Chong L J, Earle T J, et al.. Protection of logepole pine from attack by the mountain pine beetle Dendroctonus ponderosae(Coleoptera:Scolytide) using high dose of verbenone in combination with nonhost bark volatiles[J]. The forestry Chronicle, 2003, 79:685-691
    [83]

    Jakus R. A method for the protection of spruce stands against Ips typographus by the use of barriers of pheromone traps in north-eastern Slovakia[J]. Anzeiger fur schadlingskunde pflanzenschutz umweltschutz, 1998, 71: 152-158
    [84]

    Shea P J, Neustein M. Protection of a rare stand of Torrey pine from Ips paraconfusus. Application of Semiochemicals for Management of Bark Beetle Infestations // Salom S M,Hobson K R. Proceedings of an Informal Conference, USDA, Forest Service. General Technical Report INT: GTR-318, 1995:123-456
    [85]

    Harley P, Fridd-Stroud V, Greenberg J, et al.. Emission of 2-methyl-3-buten-2-ol by pines:a potentially large natural source of reactive carbon to the atmosphere[J]. Journal of Geophysical Research, 1998, 103(25):479-486
    [86]

    Strom B L, Roton L M, Goyer R A, et al.. Visual and semiochemical disruption of host finding in the southern pine beetle[J]. Ecological Applications, 1999, 9: 1028-1038
    [87]

    Campbell S A,Borden J H. Integration of visual and olfactory cues of hosts and non-hosts by three bark beetles (Coleoptera: Scolytidae) [J]. Ecological Entomology, 2006, 31(5): 437-449
    [88]

    Campbell S A,Borden J H. Close-range, in-flight integration of olfactory and visual information by a host- seeking bark beetle[J]. Entomologia Experimentalis et Applicata, 2006, 120(2): 91-98
    [89]

    Campbell S A, Borden J H. Additive and synergistic integration of multimodal cues of both hosts and non-hosts during host selection by woodboring insects[J]. Oikos, 2009, 118(4): 553-563
  • [1] 王健敏刘 娟陈晓鸣杨子祥叶寿德 . 蛀干昆虫的寄主选择及其在森林健康评价中的应用. 林业科学研究, 2010, 23(1): 125-133.
    [2] 范立鹏王军辉于占晶黄范全孔祥波王鸿斌张苏芳张真 . 杨小舟蛾成虫对5种黑杨无性系的寄主选择行为. 林业科学研究, 2014, 27(4): 459-465.
    [3] 邵鹏鹏杨兵军苏智孙佐翔王卓刘宇婷魏建荣 . 光肩星天牛对沙枣和新疆杨的偏好性. 林业科学研究, 2023, 36(4): 122-128. doi: 10.12403/j.1001-1498.20220595
    [4] 张咏洁张培毅刘君金幼菊张真 . 红脂大小蠹及油松挥发物对捕食性天敌寄主选择行为的影响. 林业科学研究, 2008, 21(2): 258-261.
    [5] 梁萌阿不都瓦哈·艾再孜阿地力·沙塔尔 . 枣实蝇对枣果挥发物的选择行为. 林业科学研究, 2020, 33(2): 145-153. doi: 10.13275/j.cnki.lykxyj.2020.02.018
    [6] 陈又清陈晓鸣李昆石雷陈智勇 . 紫胶蚧觅食时对寄主植物枝条的选择. 林业科学研究, 2004, 17(2): 159-166.
    [7] 阿不都拉·艾克拜尔阿不都瓦哈·艾再孜阿地力·沙塔尔王岩 . 枣实蝇对寄主植物不同器官的选择性测定. 林业科学研究, 2019, 32(1): 112-117. doi: 10.13275/j.cnki.lykxyj.2019.01.015
    [8] 张犀周祖基杨春平周宇爝胡霞 . 用松褐天牛幼虫培育的川硬皮肿腿蜂种群寄主选择性变化. 林业科学研究, 2010, 23(5): 756-761.
    [9] 杨伟伟王 成郄光发郭二果 . 北京西山春季侧柏游憩林内挥发物成分及其日变化规律. 林业科学研究, 2010, 23(3): 462-466.
    [10] 李娟王成彭镇华徐程扬郄光发 . 侧柏春季挥发物浓度日变化规律及其影响因子研究. 林业科学研究, 2011, 24(1): 82-90.
    [11] 侯成林王有智 . 针叶树斑痣盘菌科真菌病原调查*. 林业科学研究, 1995, 8(4): 426-428.
    [12] 卢孟柱王晓茹Alfred E. Szmidt . PCR-SSCP用于针叶树种遗传分析的可行性. 林业科学研究, 2000, 13(4): 349-354.
    [13] 张俊红吴涛韩素英齐力旺张守攻 . 落叶松体胚发育中12个针叶树特异microRNAs表达分析. 林业科学研究, 2012, 25(4): 411-418.
    [14] 黄金金刘晓彤张逸如李海奎 . 广东省针叶树种蓄积量和生物量生长模型研究. 林业科学研究, 2022, 35(3): 93-102. doi: 10.13275/j.cnki.lykxyj.2022.03.011
    [15] 高茜严东辉王凯英李鸿昌任菲 . 囊盘菌(Ascocoryne)挥发性气体成分多样性及其产烃分析. 林业科学研究, 2017, 30(3): 376-383. doi: 10.13275/j.cnki.lykxyj.2017.03.003
    [16] 郑华金幼菊周金星李文彬 . 活体珍珠梅挥发物释放的季节性及其对人体脑波影响的初探. 林业科学研究, 2003, 16(3): 328-334.
    [17] 孙丽艳韩一凡周银连阮大津 . 对云斑白条天牛具有不同抗性的杨树品种中挥发物成分的研究. 林业科学研究, 2002, 15(5): 570-574.
    [18] 刘航迟德富陈海一宇佳李晓灿 . 双斑长跗萤叶甲对几种植物挥发物的触角电位和行为反应. 林业科学研究, 2013, 26(4): 488-493.
    [19] 唐晓琴王思展卢杰高郯陈羿渠 . 冷杉梢斑螟对林芝云杉球果挥发物的触角电位及行为反应. 林业科学研究, 2021, 34(6): 140-148. doi: 10.13275/j.cnki.lykxyj.2021.06.017
    [20] 张威滕莹黄徐骏李志红张亚波舒金平王浩杰 . 筛胸梳爪叩甲幼虫对竹笋挥发物及CO2的行为反应. 林业科学研究, 2022, 35(6): 44-51. doi: 10.13275/j.cnki.lykxyj.2022.006.005
  • 加载中
计量
  • 文章访问数:  3127
  • HTML全文浏览量:  221
  • PDF下载量:  1809
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-08

非寄主挥发物对针叶树小蠹虫作用的研究进展

  • 1. 河北农业大学林学院,河北 保定 071000
  • 2.  中国林业科学研究院森林生态环境与保护研究所,国家林业局森林保护学重点实验室,北京 100091
  • 3. 中国林业科学研究院森林生态环境与保护研究所,国家林业局森林保护学重点实验室,北京 100091
基金项目:  国家973项目(2002CB111400),"十一五"林业科技支撑计划(2006BAD08A192)

摘要: 针叶树小蠹虫不仅能通过信息化学物质识别和回避非寄主生境,而且能识别非寄主树种和不适寄主树。非寄主挥发物,尤其是6碳乙醇等绿叶气体和一些8碳醇等树皮挥发物是代表着非寄主的重要气味信号,在针叶树小蠹虫寻找寄主的过程中有重要意义。本文分别对绿叶气体和非寄主树皮挥发物等的研究基础、小蠹虫对非寄主的回避、影响挥发物释放的因素、非寄主挥发物的采集分析、生物测定方法和非寄主挥发物作用的生态学及进化意义等方面的研究现状和进展进行了综述,认为小蠹虫能在混交林中找到寄主不是单因素决定的,是受多因素影响的结果。非寄主挥发物在针叶树小蠹虫的管理中具有广阔的应用前景。

English Abstract

参考文献 (89)

目录

    /

    返回文章
    返回