• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物中MicroRNA及其它非编码小RNA的保守性和进化历程

张俊红 张守攻 童再康 李万峰 韩素英 齐力旺

引用本文:
Citation:

植物中MicroRNA及其它非编码小RNA的保守性和进化历程

  • 基金项目:

    国家"973"计划项目(2009CB119100);国家"863"计划项目(2011AA100203;2013AA102704);浙江农林大学科研发展基金(2012FR078)

  • 中图分类号: S718.46

Conservation and Evolution of miRNAs and Other Small RNAs in Terrestrial Plants

  • CLC number: S718.46

  • 摘要: 非编码小RNA是一类长度约为20 26个核苷酸的内源性RNA分子,在植物中普遍存在,在转录和转录后过程调控基因表达。microRNA及其它非编码小RNA在植物个体生长发育和生理过程中起重要作用。microRNA及其它非编码小RNA在陆地植物中保守,而且每个进化分支的出现皆伴随着新microRNA和其它非编码小RNA的产生,这些现象都表明,非编码小RNA与陆地植物的系统发生密切相关。本文从microRNA及其它非编码小RNA的保守性并结合其功能,探讨了非编码小RNA在植物进化中的重要功能。
  • [1]

    Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297
    [2]

    Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and Their Regulatory Roles in Plants[J]. Annu Rev Plant Biol, 2006, 57:19-53
    [3]

    Ghildiyal M, Zamore P D. Small silencing RNAs: an expanding universe[J]. Nat Rev Genet, 2009, 10(2):94-108
    [4]

    Hammond S M. Dicing and slicing: the core machinery of the RNA interference pathway[J]. Febs Lett, 2005, 579(26):5822-5829
    [5]

    Xie Z, Johansen L K, Gustafson A M, et al. Genetic and functional diversification of small RNA pathways in plants[J]. PLoS Biol, 2004, 2(5):642-652
    [6]

    Schauer S E, Jacobsen S E, Meinke D W, et al. DICER-LIKE1: blind men and elephants in Arabidopsis development[J]. Trends Plant Sci, 2002, 7(11):487-491
    [7]

    Allen E, Xie Z X, Gustafson A M, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants[J]. Cell, 2005, 121(2):207-221
    [8]

    Felippes F F, Weigel D. Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173[J]. Embo Rep, 2009, 10(3):264-270
    [9]

    Cuperus J T, Carbonell A, Fahlgren N, et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis[J]. Nat Struct Mol Biol, 2010, 17(8):997-1003
    [10]

    Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA in plant immunity[J]. Proc Natl Acad Sci U S A, 2006, 103(47):18002-18007
    [11]

    Borsani O, Zhu J, Verslues P E, et al. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J]. Cell, 2005, 123(7):1279-1291
    [12]

    Deleris A, Gallego-Bartolome J, Bao J, et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense[J]. Science, 2006, 313(5783):68-71
    [13]

    Dunoyer P, Himber C, Ruiz-Ferrer V, et al. Intra and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways[J]. Nat Genet, 2007, 39(7):848-856
    [14]

    Chapman E J, Carrington J C. Specialization and evolution of endogenous small RNA pathways[J]. Nat Rev Genet, 2007, 8(11):884-896
    [15]

    Matzke M, Kanno T, Daxinger L, et al. RNA-mediated chromatin-based silencing in plants[J]. Curr Opin Cell Biol, 2009, 21(3):367-376
    [16]

    Chellappan P, Xia J, Zhou X, et al. siRNAs from miRNA sites mediate DNA methylation of target genes[J]. Nucleic Acids Res, 2010, 38(20):6883-6894
    [17]

    Lu C, Tej S S, Luo S, et al. Elucidation of the small RNA component of the transcriptome[J]. Science, 2005, 309(5740):1567-1569
    [18]

    Morin R D, Aksay G, Dolgosheina E, et al. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa[J]. Genome Res, 2008, 18(4):571-584
    [19]

    Dolgosheina E V, Morin R D, Aksay G, et al. Conifers have a unique small RNA silencing signature[J]. RNA, 2008, 14(8):1508-1515
    [20]

    Yakovlev I A, Fossdal C G, Johnsen O. MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce[J]. New Phytol, 2010, 187(4):1154-1169
    [21]

    Axtell M J, Snyder J A, Bartel D P. Common functions for diverse small RNAs of land plants[J]. Plant Cell, 2007, 19(6):1750-1769
    [22]

    Ahuja M R, Neale D B. Evolution of Genome Size in Conifers[J]. Silvae Genetica, 2005, 54(3):126-137
    [23]

    Vazquez F, Blevins T, Ailhas J, et al. Evolution of Arabidopsis MIR genes generates novel microRNA classes[J]. Nucleic Acids Res, 2008, 36(20):6429-6438
    [24]

    Tedder P, Zubko E, Westhead D R, et al. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA[J]. RNA, 2009, 15(6):1012-1020
    [25]

    Pang M, Woodward A W, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.)[J]. Genome Biol, 2009, 10(11):R122
    [26]

    Wan L C, Wang F, Guo X, et al. Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing[J]. BMC Plant Biol, 2012, 12:146
    [27]

    Zhang J, Wu T, Li L, et al. Dynamic expression of small RNA populations in larch (Larix leptolepis)[J]. Planta, 2013, 237(1):89-101
    [28]

    Zhang J, Zhang S, Han S, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis[J]. Planta, 2012, 236(2):647-657
    [29]

    Juarez M T, Kui J S, Thomas J, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity[J]. Nature, 2004, 428(6978):84-88
    [30]

    Parry G, Calderon-Villalobos L I, Prigge M, et al. Complex regulation of the TIR1/AFB family of auxin receptors[J]. Proc Natl Acad Sci USA, 2009, 106(52):22540-22545
    [31]

    Liu H H, Tian X, Li Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5):836-843
    [32]

    Molnar A, Schwach F, Studholme D J, et al. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii[J]. Nature, 2007, 447(7148):1126-1129
    [33]

    Lu S, Sun Y H, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development[J]. Plant J, 2007, 51:1077-1098
    [34]

    Wan L C, Zhang H, Lu S, et al. Transcriptome-wide identification and characterization of miRNAs from Pinus densata[J]. BMC Genomics, 2012, 13:132
    [35]

    Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Res, 2011, 39(1):152-157
    [36]

    Bowe L M, Gwe'naële C,dePamphilis C W. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers[J]. Proc Natl Acad Sci USA, 2000, 97:4092-4097
    [37]

    Yang H, Matsubayashi Y, Nakamura K, et al. Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants[J]. Proc Natl Acad Sci USA, 1999, 96(23):13560-13565
    [38]

    Lindsey K, Casson S, Chilley P. peptides:new signaling molecules in plants[J]. Trends Plant Sci, 2002, 7(2):78-83
    [39]

    Howell M D, Fahlgren N, Chapman E J, et al. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA and tasiRNA-directed targeting[J]. Plant Cell, 2007, 19(3):926-942
    [40]

    Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880):1185-1190
    [41]

    Bao N, Lye K W, Barton M K. MicroRNA binding sites in Arabidopsis class Ⅲ HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Dev Cell, 2004, 7(5):653-662
    [42]

    Khraiwesh B, Arif M A, Seumel G I, et al. Transcriptional control of gene expression by microRNAs[J]. Cell, 2010, 140(1):111-122
    [43]

    Peragine A, Yoshikawa M, Wu G, et al. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis[J]. Genes Dev, 2004, 18(19):2368-2379
    [44]

    Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs[J]. Mol Cell, 2004, 16(1):69-79
    [45]

    Wassenegger M, Krczal G. Nomenclature and functions of RNA-directed RNA polymerases[J]. Trends Plant Sci, 2006, 11(3):142-151
    [46]

    Matzke M, Kanno T, Huettel B, et al. Targets of RNA-directed DNA methylation[J]. Curr Opin Plant Biol, 2007, 10(5):512-519
    [47]

    Jia Y, Lisch D R, Ohtsu K, et al. Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24 nt small RNAs[J]. PLoS Genet, 2009, 5(11):e1000737
    [48]

    Wu L, Zhou H, Zhang Q, et al. DNA Methylation Mediated by a MicroRNA Pathway[J]. Mol Cell, 2010, 38(3):465-475
    [49]

    Allen E, Xie Z X, Gustafson A M, et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana[J]. Nature Genetics, 2004, 36(12):1282-1290
    [50]

    Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013, 497(7451):579-584
    [51]

    Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, et al. Architecture and evolution of a minute plant genome[J]. Nature, 2013, 498(7452):94-98
    [52]

    Filonova L H, Bozhkov P V, von Arnold S. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking[J]. J Exp Bot, 2000, 51(343):249-264
    [53]

    Cairney J, Pullman G S. The cellular and molecular biology of conifer embryogenesis[J]. New Phytol, 2007, 176(3):511-536
    [54]

    Kirst M, Johnson A F, Baucom C, et al. Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2003, 100(12):7383-7388
    [55]

    Lorenz W W, Sun F, Liang C, et al. Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries[J]. Tree Physiol, 2006, 26(1):1-16
    [56]

    Cairney J, Zheng L, Cowels A, et al. Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis[J]. Plant Mol Biol, 2006, 62(4-5):485-501
    [57]

    Vernoux T, Benfey P N. Signals that regulate stem cell activity during plant development[J]. Curr Opin Genet Dev, 2005, 15(4):388-394
    [58]

    Williams L, Grigg S P, Xie M, et al. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes[J]. Development, 2005, 132(16):3657-3668
    [59]

    Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4):513-520
    [60]

    Luo Y C, Zhou H, Li Y, et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development[J]. Febs Lett, 2006, 580(21):5111-5116
    [61]

    Wu X M, Liu M Y, Ge X X, et al. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange[J]. Planta, 2011, 233(3):495-505
    [62]

    Nodine M D, Bartel D P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis[J]. Genes Dev, 2010, 24(23):2678-2692
    [63]

    Willmann M R, Mehalick A J, Packer R L, et al. MicroRNAs regulate the timing of embryo maturation in Arabidopsis[J]. Plant Physiol, 2011, 155(4):1871-1884
    [64]

    Oh T J, Wartell R M, Cairney J, et al. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA proces sing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda)[J]. New Phytol, 2008, 179(1):67-80
    [65]

    Braybrook S A, Stone S L, Park S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis[J]. Proc Natl Acad Sci USA, 2006, 103(9):3468-3473
    [66]

    Holdsworth M J, Bentsink L, Soppe W J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination[J]. New Phytol, 2008, 179(1):33-54
  • [1] 李丹蕾张瑞芝王峰陈俏丽牛春阳零雅茗郝昕 . MicroRNA转录后调控欧美杨R2R3-MYBs抗锈菌表达. 林业科学研究, 2017, 30(2): 254-259. doi: 10.13275/j.cnki.lykxyj.2017.02.010
    [2] 张俊红吴涛韩素英齐力旺张守攻 . 落叶松体胚发育中12个针叶树特异microRNAs表达分析. 林业科学研究, 2012, 25(4): 411-418.
    [3] 朱建峰李万峰杨文华韩素英齐力旺 . 中间锦鸡儿生长发育过程中5个miRNAs及其靶基因的表达模式分析. 林业科学研究, 2013, 26(S1): 45-51.
    [4] 王楠胡宝全王春国宋文芹陈成彬 . 黑杨三倍体与二倍体叶片中miRNA表达差异研究. 林业科学研究, 2013, 26(S1): 33-38.
    [5] 戴玉成 . 用数量分类法讨论杨树栅锈菌的进化. 林业科学研究, 1992, 5(1): 78-81.
    [6] 吴涛张俊红韩素英杨文华李万峰齐力旺 . 日本落叶松小RNA文库构建及其microRNA鉴定. 林业科学研究, 2012, 25(6): 677-684.
    [7] 谢婉凤梁光红 . 松材线虫侵染下马尾松针叶miRNA和mRNA的关联表达. 林业科学研究, 2018, 31(6): 7-14. doi: 10.13275/j.cnki.lykxyj.2018.06.002
    [8] 谢丽华蒋晶刘明英乔桂荣邱文敏杨惠琴卓仁英 . ptc-miR213的人工microRNA植物表达载体的 构建及遗传转化. 林业科学研究, 2013, 26(1): 29-33.
    [9] 秦国峰 . 马尾松地理起源及进化繁衍规律的探讨地. 林业科学研究, 2002, 15(4): 406-412.
    [10] 刘霞孙冲黄勤琴谢润泸刘浩文陈泽雄 . 九叶青花椒叶绿体基因组结构及系统进化分析. 林业科学研究, 2023, 36(1): 100-108. doi: 10.12403/j.1001-1498.20220277
    [11] 李海阳赵立子赵岩秋PagKNAT2/6aPagKNAT2/6b在木质部发育中存在功能保守性. 林业科学研究, 2024, 37(2): 9-15. doi: 10.12403/j.1001-1498.20230244
    [12] 叶学敏于雪丹付其迪郑勇奇张川红 . 血皮槭叶绿体DNA非编码区差异序列筛选和分析. 林业科学研究, 2017, 30(4): 674-678. doi: 10.13275/j.cnki.lykxyj.2017.04.020
    [13] 樊龙江郭兴益马乃训 . 竹类植物与水稻等其它禾本科作物的系统进化关系及基因序列组成的比较. 林业科学研究, 2006, 19(2): 165-169.
    [14] 罗辑周国英朱积余 . 油桐尺蛾核型多角体病毒lef-8基因结构及系统进化分析. 林业科学研究, 2015, 28(2): 230-235.
    [15] 范春节王晖卢孟柱 . 毛竹小RNA高通量测序及病毒分析. 林业科学研究, 2014, 27(3): 335-340.
    [16] 崔丽贤张真黄大庄 . 非寄主挥发物对针叶树小蠹虫作用的研究进展. 林业科学研究, 2010, 23(6): 895-904.
    [17] 刘海张怀清莫登奎鞠洪波 . 基于信息编码的森林景观可视化模拟. 林业科学研究, 2014, 27(2): 208-212.
    [18] 杨卫东王敬文张金萍费学谦 . 孝顺竹RNA提取方法研究. 林业科学研究, 2005, 18(6): 769-772.
    [19] 王越张苏芳徐瑶方加兴孔祥波刘福张真 . 美国白蛾几丁质酶细菌表达的RNA干扰载体构建及其介导的RNA干扰. 林业科学研究, 2019, 32(2): 1-8. doi: 10.13275/j.cnki.lykxyj.2019.02.001
    [20] 崔丽娟张曼胤 . 扎龙湿地非使用价值评价研究. 林业科学研究, 2006, 19(4): 491-496.
  • 加载中
计量
  • 文章访问数:  2596
  • HTML全文浏览量:  217
  • PDF下载量:  1330
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-21

植物中MicroRNA及其它非编码小RNA的保守性和进化历程

  • 1. 中国林业科学研究院林业研究所, 北京 100091
  • 2. 浙江农林大学亚热带森林培育国家重点实验室培育基地, 浙江 临安 311300
  • 3. 中国林业科学研究院森林生态环境与保护研究所, 北京 100091
  • 4. 1. 中国林业科学研究院林业研究所, 北京 100091
基金项目:  国家"973"计划项目(2009CB119100);国家"863"计划项目(2011AA100203;2013AA102704);浙江农林大学科研发展基金(2012FR078)

摘要: 非编码小RNA是一类长度约为20 26个核苷酸的内源性RNA分子,在植物中普遍存在,在转录和转录后过程调控基因表达。microRNA及其它非编码小RNA在植物个体生长发育和生理过程中起重要作用。microRNA及其它非编码小RNA在陆地植物中保守,而且每个进化分支的出现皆伴随着新microRNA和其它非编码小RNA的产生,这些现象都表明,非编码小RNA与陆地植物的系统发生密切相关。本文从microRNA及其它非编码小RNA的保守性并结合其功能,探讨了非编码小RNA在植物进化中的重要功能。

English Abstract

参考文献 (66)

目录

    /

    返回文章
    返回