• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桃果实醇酰基转移酶基因的克隆及对外源乙烯的响应表达

王贵章 陈新 赵天田 梁丽松 马庆华 王贵禧

引用本文:
Citation:

桃果实醇酰基转移酶基因的克隆及对外源乙烯的响应表达

  • 基金项目:

    国家自然科学基金资助项目(31071834)

  • 中图分类号: S662.1

Cloning, Characterization and Expression of Alcohol Acyltransferase Gene which Responses to Exogenous Ethylene in Peach Fruit

  • CLC number: S662.1

  • 摘要: 为研究桃果实酯类香气的生物合成,克隆了桃醇酰基转移酶基因AAT,并研究了外源乙烯对该基因mRNA转录水平的影响。根据桃基因组测序结果,采用RACE和反转录PCR技术克隆到1个与醇酰基转移酶基因同源的cDNA,序列全长1 486 bp,CDS区长度为1 353 bp,编码450个氨基酸,命名为PpAAT2。PpAAT2蛋白属于PLN02481超级家族,含有植物转移酶基因2个高度保守结构域HXXXD和D(N)F(V)GWG。基因位于桃第5条染色体,BAC注释为1条包含1个内含子的mRNA序列转录链,CDS区有2处碱基突变,其中,555 bp处碱基由C突变为G,导致丙氨酸突变为缬氨酸。AAT基因响应乙烯表达,0 ℃冷藏桃施加外源乙烯促进AAT基因表达水平;该基因在叶片、花和成熟果肉中均表达,且在叶片和花中的表达丰度比果实高,推测其在不同的生理过程中均发挥作用。
  • [1]

    Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds[J]. The Plant Journal, 2008, 54(4): 712-732
    [2] 李杨昕. 大久保桃果实特征香气物质低温代谢障碍的基础研究 [D]. 北京:中国林业科学研究院, 2010

    [3] 蔡 琰, 余美丽, 邢宏杰, 等.低温预贮处理对冷藏水蜜桃冷害和品质的影响[J]. 农业工程学报, 2010, 26(6): 334-338

    [4]

    Lurie S, Crisosto C H. Chilling injury in peach and nectarine[J]. Postharvest Biology and Technology, 2005, 37(3): 195-208
    [5]

    Cantín C M, Crisosto C H, Ogundiwin E A, et al. Chilling injury susceptibility in an intra-specific peach ((Prunus persica (L.) Batsch) progeny[J]. Postharvest Biology and Technology, 2010, 58(2): 79-87
    [6]

    Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced Levels of the Aroma and Flavor Compound S-Linalool by Metabolic Engineering of the Terpenoid Pathway in Tomato Fruits[J]. Plant Physiology, 2001, 127(3):1256-1265
    [7]

    Engel K H, Ramming J D W, Flath R A, et al. Investigation of Volatile Constituents in Nectarines. 2. Changes in Aroma Composition during Nectarine Maturation[J]. Journal of Agricultural and Food Chemistry, 1988, 36(5): 1003-1006
    [8]

    Staudt M , Jackson B, El-aouni H, et al. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative[J]. Tree Physiology, 2010, 30(10): 1320-1334
    [9]

    Lombardo V A, Osorio S, Borsani J, et al. Metabolic Profiling during Peach Fruit Development and Ripening Reveals the Metabolic Networks That Underpin Each Developmental Stage[J]. Plant Physiology, 2011, 157(4): 1696-1710
    [10]

    Ayala-Zavala J F, Wang S Y, Wang C Y, et al. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit[J]. LWT-Food Science and Technology, 2004, 37(7): 687-695
    [11]

    Li Bin, JiaHui-juan, Zhang Xiao-meng. Effects of Fruit Pre-harvest Bagging on Fruit Quality of Peach (Prunus persica Batsch cv. Hujingmilu)[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(3):287-292
    [12]

    Wang Y J, Yang C X, Li S H, et al. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS[J]. Food Chemistry, 2009, 116(1): 356-364
    [13]

    Eduardo I, Chietera G, Bassi D, et al. Identification of key odor volatile compounds in the essential oil of nine peach accessions[J]. Journal of the Science of Food and Agriculture, 2010, 90(7): 1146-1154
    [14] 李 明, 王利平, 张 阳, 等. 水蜜桃品种间果香成分的固相微萃取-气质联用分析[J].园艺学报,2006,33(5):1071-1074

    [15]

    Vernin G, Vernin E, Vernin C, et al. Extraction and GC-MS-SPECMA data bank analysis of the aroma of Psidium guajava L. fruit from Egypt[J]. Flavour and Fragrance Journal, 1991, 6(2): 143-148
    [16]

    Xu Y, Fan W L, Qian M C. Characterization of Aroma Compounds in Apple Cider Using Solvent-Assisted Flavor Evaporation and Headspace Solid-Phase Microextraction[J]. Journal of Agricultural and Food Chemistry, 2007, 55(8): 3051-3057
    [17]

    Beekwilder J, Alvarez-Huerta M, Neef E, et al. Functional characterization of enzymes forming volatile esters from straw-berry and banana[J]. Plant Physiology, 2004, 135(4):1865-1878
    [18]

    Zhang B, Shen J Y, Wei W W, et al. Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening[J]. Journal of the Science of Food and Agriculture, 2010, 58(10): 6157-6165
    [19]

    González-Agüero M, Troncoso S, Gudenschwager O, et al. Differential expression levels of aroma-related genes during ripening of apricot (Prunus armeniaca L.) [J]. Plant Physiology and Biochemistry, 2009, 47(5): 435-440
    [20]

    Günther C S, Chervin C, Marsh K B, et al. Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences[J]. Phytochemistry, 2011, 72(8): 700-710
    [21]

    El-Sharkawy I, Manríquez D, Flores F B, et al. Functional Characterization of a Melon Alcohol Acyl-transferase Gene Family Involved in the Biosynthesis of Ester Volatiles. Identification of the Crucial Role of a Threonine Residue for Enzyme Activity [J]. Plant Molecular Biology, 2005, 59(2): 345-362
    [22] 冯燕青, 赵 聪, 马乐园, 等.甜瓜果实醇酰基转移酶基因的克隆及表达分析[J]. 山东农业科学, 2009(5): 1-3

    [23]

    Aharoni A, Keizer L C P, Bouwmeester H J, et al. Identification of the SAAT Gene Involved in Strawberry Flavor Biogenesis by Use of DNA Microarrays[J]. The Plant Cell, 2000, 12(5):647-661
    [24]

    Cumplido-Laso G, Medina-Puche L, Moyano E, et al. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis[J]. Journal of Experimental Botany,2012,63(11):4275-4290
    [25]

    Souleyre E J F, Greenwood D R, Friel E N, et al. An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor[J]. FEBS Journal, 2005, 272(12): 3132-3144
    [26]

    Balbontín C, Gaete-Eastman C, Fuentes L, et al. VpAAT1, a Gene Encoding an Alcohol Acyltransferase, Is Involved in Ester Biosynthesis during Ripening of Mountain Papaya Fruit[J]. Journal of Agricultural and Food Chemistry, 2010, 58 (8): 5114-5121
    [27]

    Xi W P, Zhang B, Shen J Y, et al. Intermittent warming alleviated the loss of peach fruit aroma-related esters by regulation of AAT during cold storage[J]. Postharvest Biology and Technology, 2012a, 74:42-48
    [28]

    Yahyaoui F E L, Wongs-Aree C, Latché A, et al. Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening[J]. European Journal of Biochemistry, 2002, 269(9): 2359-2366
    [29]

    Morales-Quintana L, Fuentes L, Gaete-Eastman C, et al. Structural characterization and substrate specificity of VpAAT1 protein related to ester biosynthesis in mountain papaya fruit[J]. Journal of Molecular Graphics and Modelling, 2010, 29(5): 635-642
    [30]

    Morales-Quintana L, Nu ez-Tobar M X, Moya-León M A, et al. Molecular Dynamics Simulation and Site-Directed Mutagenesis of Alcohol Acyltransferase: A Proposed Mechanism of Catalysis[J]. Journal of Chemical Information and Modeling, 2013, 53 (10): 2689-2700
    [31]

    Defilippi B G, Kader A A, Dandekar A M. Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene[J]. Plant Science, 2005,168(5):1199-1210
    [32]

    Balbontín C, Gaete-Eastman C, Vergara M, et al. Treatment with 1-MCP and the role of ethylene in aroma development of mountain papaya fruit[J]. Postharvest Biology and Technology, 2007, 43(1): 67-77
    [33]

    Xi W P, Zhang B, Liang L, et al. Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit Plant[J]. Cell and Environment, 2012b, 35(3): 534-545
    [34]

    Aly M M, El-Agamy S Z A, Biggs R H. Ethylene production and firmness of peach and nectarine fruits as related to storage[J]. Proc Fla State Hort Soc, 1981(94):291-294
    [35] 李杨昕, 王贵禧, 梁丽松. '大久保' 桃常温贮藏过程中香气成分变化及其与乙烯释放的关系[J]. 园艺学报, 2011, 38(1): 35-42

    [36] 胡花丽, 梁丽松, 王贵禧, 等. 外源乙烯对CA贮藏桃果实MDA含量、PPO和LOX活性变化的影响[J]. 西北林学院学报, 2007, 22(3): 38-42

    [37]

    Marchler-Bauer A, Lu S, Anderson J B, et al. CDD: a Conserved Domain Database for the functional annotation of proteins[J]. Nucleic Acids Research, 2011, 39(1):225-229
    [38]

    Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739
    [39]

    Tong Z G, Gao Z H, Wang F, et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR [J]. BMC Molecular Biology, 2009, 10:71(doi:10.1186/1471-2199-10-71)
    [40]

    Livak K J and Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method[J]. Methods, 2001(25): 402-408
    [41] 魏好程. 桃果实采后贮藏保鲜及其品质控制的研究 . 儋州:华南热带农业大学, 2005

    [42]

    Camps C, Guilermin P, Mauget J C, et al. Data analysis of penetrometric force/displacement curves for the characterization of whole apple fruits[J]. Journal of Texture Studies, 2005, 36(4): 387-401
    [43] 胡花丽,梁丽松, 李鹏霞, 等. 外源乙烯对CA 贮藏桃果实内源乙烯生物合成的影响[J]. 保鲜与加工, 2008(48):34-37

    [44]

    Sánchez G, Venegas-Calerón M, Salas J J, et al. An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit[J]. BMC Genomics, 2013, 14:343(doi:10.1186/1471-2164-14-343)
    [45] 席万鹏, 郁松林, 周志钦.桃果实香气物质生物合成研究进展[J]. 园艺学报, 2013, 40(9): 1679-1690

    [46]

    Burg S P, Burg E A. Role of Ethylene in Fruit Ripening[J]. Plant Physiol, 1962, 37(2): 179-189
    [47]

    Saltveit M E. Effect of ethylene on quality of fresh fruits and vegetables[J]. Postharvest Biology and Technology, 1999, 15(3): 279-292
    [48]

    Nath P, Trivedi P K, Sane V A, et al. Role of Ethylene in Fruit Ripening[M]// Khan N A. Ethylene Action in Plants Germany Berlin Heidelberg:Springer-Verlag,2006:151-186(10.1007/978-3-540-32846-9_8)
    [49]

    Barry C S, Giovannoni J J. Ethylene and Fruit Ripening[J]. Journal of Plant Growth Regulation, 2007, 26(2): 143-159
    [50]

    Hayama H, Shimada T, Fujii H, et al. Ethylene-regulation of fruit softening and softening-related genes in peach[J]. Journal of Experimental Botany, 2006, 57(15): 4071-4077
    [51]

    Ortiz A, Graell J, López M L, et al. Volatile ester-synthesising capacity in 'Tardibelle' peach fruit in response to controlled atmosphere and 1-MCP treatment[J]. Food Chemistry, 2010, 123(3): 698-704
    [52]

    Vendramini A L,Trugo L C. Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity[J]. Food Chemistry, 2000, 71(2): 195-198
    [53]

    Schaffer R J, Friel E N, Souleyre E J F, et al. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway[J]. Plant Physiology, 2007, 144 (4): 1899-1912
    [54]

    Li D P, Xu Y F, Xu G M, et al. Molecular cloning and expression of a gene encoding alcohol acyltransferase (MdAAT2) from apple (cv. Golden Delicious) [J]. Phytochemistry, 2006, 67(7): 658-667
    [55]

    King A, Nam J W, Han J, et al. Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters[J]. Planta, 2007, 226(2):381-394
  • [1] 王友升王贵禧 . 冷害桃果实品质劣变及其控制措施. 林业科学研究, 2003, 16(4): 465-472.
    [2] 王贵禧王友升梁丽松 . 不同贮藏温度模式下大久保桃果实冷害及其品质劣变研究. 林业科学研究, 2005, 18(2): 114-119.
    [3] 陈成彬王彬胡宝全王春国宋文芹 . 黑杨DNA甲基转移酶基因片段的分离及表达分析. 林业科学研究, 2013, 26(S1): 87-95.
    [4] 李雪平高志民彭镇华岳永德高健蔡春菊牟少华 . 绿竹咖啡酸-O-甲基转移酶基因(COMT)的克隆及相关分析. 林业科学研究, 2007, 20(5): 722-725.
    [5] 易敏张守攻谢允慧孙晓梅 . 日本落叶松咖啡酸-O-甲基转移酶基因 LkCOMT的克隆及单核苷酸多态性分析. 林业科学研究, 2013, 26(S1): 52-59.
    [6] 朱文旭丁昌俊张伟溪张冰玉黄秦军褚延广苏晓华 . 8年生转基因库安托杨外源基因转移及对土壤微生物数量影响的检测. 林业科学研究, 2017, 30(2): 349-353. doi: 10.13275/j.cnki.lykxyj.2017.02.023
    [7] 姚侠妹常二梅纪敬岳剑云谢田田邓楠史胜青江泽平 . 外源ABA对短期H2O2胁迫下侧柏幼苗活性氧代谢及相关基因的影响. 林业科学研究, 2017, 30(4): 624-632. doi: 10.13275/j.cnki.lykxyj.2017.04.013
    [8] 梁成杰李国宏李广武高瑞桐赵忠懿孙金钟 . 诱饵树施内吸和菊酯类农药防治两种天牛成虫的研究. 林业科学研究, 1997, 10(2): 189-193.
    [9] 王晓霞杨海灵毛建丰王晓茹 . 油松谷胱苷肽转移酶Tau1单体结构稳定性研究. 林业科学研究, 2020, 33(2): 1-8. doi: 10.13275/j.cnki.lykxyj.2020.02.001
    [10] 徐浩杨克彬朱成磊李英高志民 . 毛竹肉桂酰辅酶A还原酶基因PeCCR功能初步研究. 林业科学研究, 2020, 33(2): 77-84. doi: 10.13275/j.cnki.lykxyj.2020.02.010
    [11] 易鹏侯开卫周家齐马显达张建云王芳 . 外源DNA导入木豆及其在育种上的应用. 林业科学研究, 1996, 9(5): 530-533.
    [12] 葛晓宁钟秋平罗帅曹林青郭红艳袁婷婷周幼成 . 外源GA3对油茶花器官内源激素与坐果率的影响. 林业科学研究, 2020, 33(1): 162-170. doi: 10.13275/j.cnki.lykxyj.2020.01.021
    [13] 刘钰曲美桥郑瑞杰俞金健耿娅安轶韩潇黄李超曾为 . 外源谷氨酸对杨树耐旱性的影响. 林业科学研究, 2023, 36(4): 59-71. doi: 10.12403/j.1001-1498.20220572
    [14] 钟明霞艾万峰袁欣黄一鹤魏俊王玉涛陆秀君 . 不同外源物质对蒙古栎插穗生根及基部生理生化的影响. 林业科学研究, 2024, 37(): 1-9. doi: 10.12403/j.1001-1498.20230362
    [15] 高明远甘红豪李清河李斌褚建民 . 外源水杨酸对盐胁迫下白榆生理特性的影响. 林业科学研究, 2018, 31(6): 138-143. doi: 10.13275/j.cnki.lykxyj.2018.06.019
    [16] 李明亮韩一凡李玲田颖川李凝王世绩 . ACC氧化酶cDNA克隆及其对美洲黑杨体内乙烯产生的反义抑制. 林业科学研究, 1999, 12(3): 223-228.
    [17] 刘妮陆沁张金稳凌晓霏刘宏屏陈航陈晓鸣 . 外源保幼激素类似物对白蜡虫泌蜡和发育的影响. 林业科学研究, 2018, 31(2): 114-119. doi: 10.13275/j.cnki.lykxyj.2018.02.016
    [18] 熊仕发吴立文陈益存高暝周新华汪阳东 . 不同种源白栎果实形态特征和营养成分含量变异分析. 林业科学研究, 2020, 33(2): 93-102. doi: 10.13275/j.cnki.lykxyj.2020.02.012
    [19] 朱承美杨玉武白世红陈江林邱培君曲爱军 . 三突花蛛对桃小叶蝉和桃粉蚜的选择效应研究. 林业科学研究, 2000, 13(4): 443-446.
    [20] 陈立新李刚刘云超段文标孙双红李帆帆李少博毛弘宇 . 外源有机物与温度耦合作用对红松阔叶混交林土壤有机碳的激发效应. 林业科学研究, 2017, 30(5): 797-804. doi: 10.13275/j.cnki.lykxyj.2017.05.013
  • 加载中
计量
  • 文章访问数:  2971
  • HTML全文浏览量:  141
  • PDF下载量:  1064
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-27

桃果实醇酰基转移酶基因的克隆及对外源乙烯的响应表达

  • 1. 林木遗传育种国家重点实验室, 国家林业局林木培育重点实验室, 中国林业科学研究院林业研究所, 北京 100091
  • 2. 山东省果树研究所, 山东省果树生物技术育种重点实验室, 山东 泰安 271000
基金项目:  国家自然科学基金资助项目(31071834)

摘要: 为研究桃果实酯类香气的生物合成,克隆了桃醇酰基转移酶基因AAT,并研究了外源乙烯对该基因mRNA转录水平的影响。根据桃基因组测序结果,采用RACE和反转录PCR技术克隆到1个与醇酰基转移酶基因同源的cDNA,序列全长1 486 bp,CDS区长度为1 353 bp,编码450个氨基酸,命名为PpAAT2。PpAAT2蛋白属于PLN02481超级家族,含有植物转移酶基因2个高度保守结构域HXXXD和D(N)F(V)GWG。基因位于桃第5条染色体,BAC注释为1条包含1个内含子的mRNA序列转录链,CDS区有2处碱基突变,其中,555 bp处碱基由C突变为G,导致丙氨酸突变为缬氨酸。AAT基因响应乙烯表达,0 ℃冷藏桃施加外源乙烯促进AAT基因表达水平;该基因在叶片、花和成熟果肉中均表达,且在叶片和花中的表达丰度比果实高,推测其在不同的生理过程中均发挥作用。

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回