• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第二代桉树人工纯林和混交林土壤呼吸及其组分研究

黄雪蔓 刘世荣 尤业明

引用本文:
Citation:

第二代桉树人工纯林和混交林土壤呼吸及其组分研究

  • 基金项目:

    林业公益行业科技科研重大专项(200804001,201104006)

  • 中图分类号: S792.39

Study on the Soil Respiration and Its Components of the Second Rotation Eucalyptus Plantations in Subtropical China

  • CLC number: S792.39

  • 摘要: 以广西凭祥中国林业科学研究院热带林业实验中心第二代桉树人工纯林(PP2)及其与降香黄檀混交的混交林(MP2)为研究对象,采用壕沟法,利用LI-8100土壤呼吸测定系统,对两种林分土壤呼吸组分进行分离研究。结果表明:PP2和MP2土壤呼吸速率及其各呼吸组分季节变化与土壤5 cm处的温度季节变化相似,峰值出现在6—8月份,谷值出现在12月底至次年1月初,土壤呼吸速率与土壤含水量无关;PP2全年土壤总呼吸为1 147.41 g·m-2,比MP2(844.07 g·m-2)增加了26.44%,MP2的自养呼吸(RR)累积量(136.87 g·m-2)比PP2(506.72 g·m-2)降低72.99%,而其异养呼吸(RH)累积量(707.21 g·m-2)却比PP2(640.69 g·m-2)增加了10.38%。纯林和混交林的细根生物量差异以及土壤有机质含量、凋落物有机质含量、土壤C/N、凋落物量和凋落物C/N的不同是导致自养呼吸和异养呼吸产生差异的主要原因。
  • [1]

    IPCC. Climate Change 2001: The Scientific Basis[M]. Cambridge University Press, Cambridge, UK.,2001.
    [2]

    Hanson P J, Edwards N T, Garten C T,et al. Separation root and soil microbial contributions to soil respiration: a review of methods and observations[J]. Biogeochemistry, 2000, 48: 115-146.
    [3]

    Jassal R S, Black T A, Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: theory and practice[J]. Agricultural and Forest Meteorology,2006, 140:193-202.
    [4]

    Kuzyakov Y, Bol R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar [J].Soil Biology and Biochemistry, 2006, 38:747-758.
    [5]

    Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biology and Biochemistry, 2001, 33:155-165.
    [6]

    Fang C, Smith P, Moncrieff J B, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433:57-59.
    [7]

    Hartley I P, Heinemeyer A, Evans S P. The effect of soil warming on bulk soil vs. rhizosphere respiration[J]. Global Change Biology, 2007, 13: 2654-2667.
    [8]

    Subke J A, Inglima I, Cotrufo M F. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review[J]. Global Change Biology, 2006, 12: 921-943.
    [9]

    Trumbore S. Carbon respired by terrestrial ecosystems-recent progress and challenges[J]. Global Change Biology, 2006, 12: 141-153.
    [10]

    Högberg P, Nordgren A, Buchmann N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration[J]. Nature, 2001, 411:789-792.
    [11]

    Ryan M G, Law B E. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry, 2005, 73: 3-27.
    [12]

    Borken W, Savage K, Davidson E A, et al. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil[J]. Global Change Biology, 2006, 12: 177-193.
    [13]

    Davidson E A, Janssens I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440: 165-173.
    [14]

    Scott-Denton L E, Rosenstiel T N, Monson R K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration[J]. Global Change Biology, 2006, 12: 205-216.
    [15]

    Hartley I P, Heinemeyer A, Ineson P. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response[J]. Global Change Biology, 2007, 3:1761-1770.
    [16]

    Brüggemann N, Gessler A, Kayler Z, et al. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review[J]. Biogeosciences Discussions, 2011, 8: 3619-3695.
    [17]

    Taneva L, Gonzalez-Meler M A. Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2 enrichment[J]. Biogeosciences, 2011, 8:3077-3092.
    [18]

    Davidson E A, Janssens I A, Luo Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10[J]. Global Change Biology, 2006, 12:154-164.
    [19]

    Davidson E A, Verchot L V, Cattanio J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biogeochemistry, 2000, 48:53-69.
    [20]

    Raich J W, Tufekcioglu A. Vegetation and soil respiration: Correlation and controls[J]. Biogeochemistry, 2000, 48:71-90.
    [21]

    Curiel-Yuste J, Janssens I A, Carrara A,et al. Annual Q10of soil respiration reflects plant phenological patterns as well as temperature sensitivity[J]. Global Change Biology, 2004, 10:161-169.
    [22]

    Rey A, Pegoraro E, Tedeschi V,et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biology,2002, 8:851-866.
    [23]

    Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J]. Biogeochemistry, 2000, 48: 21-51.
    [24]

    Janssens I A, Lankreijer H, Matteucci G, et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests[J]. Global Change Biology, 2001, 7:269-278.
    [25]

    Hibbard K A, Law B E, Reichstein M, et al. An analysis of soil respiration across northern hemisphere temperate ecosystems[J]. Biogeochemistry, 2005, 73:29-70.
    [26]

    Martin J G, Bolstad P V. Soil respiration in temperate forests: influence of soil moisture and site biological, chemical and physical characteristics[J]. Biogeochemistry, 2005, 73: 149-182.
    [27]

    Ryan M G,Law B E. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry, 2005, 73: 3-27.
    [28]

    Bahn M, Schmitt M, Siegwolf R, et al. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal time scale?[J]. New Phytologist, 2009, 182: 451-460.
    [29]

    Qi S X. Eucalyptus in China[M]. Beijing, China Forestry Publishing House. 2002, 517.
    [30]

    Binkley D, Senock R, Bird S,et al. Twenty years ofstand development in pure and mixed stands of Eucalyptus saligna and nitrogen-fixing Facaltaria mollucana[J]. Forest Ecology and Management,2003, 182:93-102.
    [31]

    Bauhus J, Khanna P K, Menden N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii[J].Canadian Journal of Ferest Research, 2000, 30:1886-1894.
    [32]

    Bauhus J, van Winden A P, Nicotra A B. Above-ground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus[J]. Canadian Journal of Ferest Research, 2004, 34: 686-694.
    [33]

    Hendricks J J, Hendrick R L, Wilson C A, et al. Assessing the Patterns and Controls of Fine Root Dynamics: an Empirical Test and Methodological Review [J]. Journal of Ecology, 2006, 94: 40-57.
    [34]

    Nelson D W, Sommers L E. Total Carbon, Organic Carbon, and Organic Matter[M]//Methods of Soil Analysis. American Society of Agronomy Inc, Madison, Wisconsin, 1996, 961-1010.
    [35]

    Bremner J M. Nitrogen-total[M]//Sparks D L. Methods of Soil Analysis [M]. SSSA Book Ser, Madison, Wisconsin, 1996, 1085-1122.
    [36]

    Bond-Lamberty B, Wang C K, Gower S T. A global relationship between the heterotrophic and autotrophic components of soil respiration?[J]. Global Change Biology. 2004a, 10: 1756-1766.
    [37]

    Lee M S, Nakane K, Nakatsubo T,et al. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest[J]. Plant Soil, 2003, 255:311-318.
    [38]

    Forrester D I, Bauhus J, Khanna P K. Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii[J], Forest Ecology and Management, 2004, 193:81-95.
    [39]

    Forrester D I, Bauhus J, Cowie A L, et al. Mixed-species plantations of Eucalyptus with nitrogen fixing trees: a review[J]. Forest Ecology and Management, 2006, 233: 211-230.
    [40]

    Matteucci G, Dore S, Rebmann C, et al. Soil respiration in beech and spruce forests in Europe: trends, controlling factors, annual budgets and implications for the ecosystem carbon balance[M]//Schulze.Carbon and Nitrogen Cycling in European Forest Ecosystems. Springer-Verlag, Berlin. 2000, 217-236.
    [41]

    Tang J, Baldocchi D D. Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components[J]. Biogeochemistry, 2005, 73:183-207.
    [42]

    Takahashi A, Hiyama T, Takahashi H A, et al. Analytical estimation of the vertical distribution of CO2 production within soil application to a Japanese temperate forest[J]. Agricultural and Forest Meteorology, 2004, 126: 223-235.
    [43] 张东秋,石培礼,张宪洲. 土壤呼吸主要影响因素的研究进展[J].地球科学进展, 2005, 20(7): 778-785.

    [44] 杨玉盛,陈光水,董彬,等. 格氏拷天然林和人工林土坡呼吸对干湿交替的响应[J].生态学报, 2004, 24(5): 953-958.

    [45] 刘世荣,李春阳. 落叶松人工养分循环过程与潜在地力衰退趋势的研究[J]. 东北林业大学学报. 1993, 21(2):19-24.

    [46] 李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特征[J].土壤学报, 2002, 39(l):97-104.

    [47]

    Raich J W, Tufekciogul A. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48:71-90.
    [48]

    Priess J A, Koning G H, Veldkamp A. Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador[J]. Agriculture Ecosystems & Environment, 2001, 85: 269-279.
    [49]

    Xu M, Qi Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California[J]. Global Change Biology, 2001, 7:667-677.
    [50]

    Kang S Y, Doh S, Lee D, et al. Topgraphic and climatic controls on soil respiration in six temperate mixed-harwood forest slopes, Korea[J]. Global Change Biology, 2003, 9:1427-1437.
    [51]

    Scott-Denton L E, Rosenstiel T N, Monson R K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration[J]. Global Change Biology, 2006, 12: 205-216.
    [52]

    Frank A B, Liebig M A, Hanson J D. Soil carbon dioxide fluxes in northern semiarid grasslands[J]. Soil Biology and Biochemistry, 2002, 34:1235-1241.
    [53] 张小全, 吴可红.森林细根生产和周转研究[J], 林业科学, 2001, 37(3):126-138.

    [54]

    Chapman S J, Thurlow M. The influence of climate on CO2 and CH4 emission from organic soils[J]. Agricultural and Forest Meteorology, 1996, 79:205-217.
    [55] 耿远波,章 申,董云社,等.草原土坡的碳氮含量及其与温室气体通量的相关性[J].地理学报,2001, 56(1): 44-53.

  • [1] 赵娜孟平张劲松陆森宋文琛 . 黄河小浪底库区山地栓皮栎人工林土壤呼吸的季节动态. 林业科学研究, 2016, 29(5): 630-637.
    [2] 王鹤松张劲松孟平高峻贾长荣 . 华北山区非主要生长季典型人工林土壤呼吸变化特征. 林业科学研究, 2007, 20(6): 820-825.
    [3] 戴捷贾志清李清雪何凌仙子杨凯悦高娅 . 自然降雨对高寒沙地中间锦鸡儿人工林土壤呼吸的影响. 林业科学研究, 2020, 33(4): 151-159. doi: 10.13275/j.cnki.lykxyj.2020.04.019
    [4] 黄雪蔓刘世荣尤业明 . 固氮树种对第二代桉树人工林土壤微生物生物量和结构的影响. 林业科学研究, 2014, 27(5): 612-620.
    [5] 邓东周范志平王红孙学凯高俊刚曾德慧张新厚 . 土壤水分对土壤呼吸的影响. 林业科学研究, 2009, 22(5): 722-727.
    [6] 唐晓鹿范少辉漆良华刘广路官凤英杜满义许庆标 . 采伐对幕布山区毛竹林土壤呼吸的影响. 林业科学研究, 2013, 26(1): 52-57.
    [7] 刘博奇牟长城邢亚娟王庆贵 . 模拟氮沉降对云冷杉红松林土壤呼吸的影响. 林业科学研究, 2012, 25(6): 767-772.
    [8] 潘勇军王兵陈步峰陈进史欣李汉强 . 短轮伐期桉树人工林土壤温度特征分析. 林业科学研究, 2011, 24(3): 404-409.
    [9] 马海宾 . 桉树上一种重要病害--桉树锈病. 林业科学研究, 2003, 16(3): 376-376.
    [10] 雷蕾肖文发 . 采伐对森林土壤碳库影响的不确定性. 林业科学研究, 2015, 28(6): 892-899.
    [11] 弓明钦陈羽王凤珍叶秦 . 华南地区桉树林中VA菌根菌资源及其组成. 林业科学研究, 1997, 10(3): 277-282.
    [12] 杨志成叶长青封建文蔡仁和 . 四川桤木幼林施用磷肥效应*. 林业科学研究, 1995, 8(1): 112-114.
    [13] 昝志曼刘彦春刘银占轩娟赵威 . 极端降雪对北亚热带-暖温带气候过渡带人工林土壤呼吸的影响. 林业科学研究, 2020, 33(2): 27-34. doi: 10.13275/j.cnki.lykxyj.2020.02.004
    [14] 雷蕾肖文发曾立雄黄志霖高尚坤谭本旺 . 不同营林措施对马尾松林土壤呼吸影响. 林业科学研究, 2015, 28(5): 713-719.
    [15] 王一刘彦春刘世荣陆海波 . 模拟气候变暖和林内穿透雨减少对干旱年暖温带锐齿栎林土壤呼吸的影响. 林业科学研究, 2016, 29(5): 698-704.
    [16] 慈航李兆佳周光益赵厚本邱治军杨乐苏 . 温度和元素含量对流溪河2个树种粗木质残体呼吸季节动态的影响. 林业科学研究, 2018, 31(5): 74-81. doi: 10.13275/j.cnki.lykxyj.2018.05.010
    [17] 梁成杰赵玲吴燕王贵成 . 春尺蠖蛹呼吸代谢与滞育关系的研究. 林业科学研究, 1998, 11(3): 339-341.
    [18] 李意德吴仲民曾庆波周光益陈步峰方精云 . 尖峰岭热带山地雨林群落呼吸量初步测定. 林业科学研究, 1997, 10(4): 348-355.
    [19] 王满囷庞辉李周直 . 鞭角华扁叶蜂预蛹呼吸代谢的特点. 林业科学研究, 2001, 14(6): 616-620.
    [20] 李春萍王世伟丁俊杰潘存德马彬努尔夏提·克里木江米热丁·艾海提祖力皮卡尔·吐松 . 施氮水平对核桃细根呼吸速率及相关酶活性的影响. 林业科学研究, 2019, 32(6): 56-62. doi: 10.13275/j.cnki.lykxyj.2019.06.008
  • 加载中
计量
  • 文章访问数:  2970
  • HTML全文浏览量:  196
  • PDF下载量:  1427
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-28

第二代桉树人工纯林和混交林土壤呼吸及其组分研究

  • 1. 中国林业科学研究院森林生态环境与保护研究所, 国家林业局森林生态环境重点实验室, 北京 100091
  • 2. 北京林业大学森林培育与保护教育部重点实验室, 北京 100083
基金项目:  林业公益行业科技科研重大专项(200804001,201104006)

摘要: 以广西凭祥中国林业科学研究院热带林业实验中心第二代桉树人工纯林(PP2)及其与降香黄檀混交的混交林(MP2)为研究对象,采用壕沟法,利用LI-8100土壤呼吸测定系统,对两种林分土壤呼吸组分进行分离研究。结果表明:PP2和MP2土壤呼吸速率及其各呼吸组分季节变化与土壤5 cm处的温度季节变化相似,峰值出现在6—8月份,谷值出现在12月底至次年1月初,土壤呼吸速率与土壤含水量无关;PP2全年土壤总呼吸为1 147.41 g·m-2,比MP2(844.07 g·m-2)增加了26.44%,MP2的自养呼吸(RR)累积量(136.87 g·m-2)比PP2(506.72 g·m-2)降低72.99%,而其异养呼吸(RH)累积量(707.21 g·m-2)却比PP2(640.69 g·m-2)增加了10.38%。纯林和混交林的细根生物量差异以及土壤有机质含量、凋落物有机质含量、土壤C/N、凋落物量和凋落物C/N的不同是导致自养呼吸和异养呼吸产生差异的主要原因。

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回