• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杨树CDPK基因家族的表达分析及功能预测

张进 李建波 刘伯斌 陈军 卢孟柱

引用本文:
Citation:

杨树CDPK基因家族的表达分析及功能预测

  • 基金项目:

    “十二·五”863计划课题“杨树分子育种与品种创制”(2011AA100201);中国博士后科学基金面上资助(2014M550104)

  • 中图分类号: S792.11

Expression and Functional Analysis of CDPK Gene Family in Populus

  • CLC number: S792.11

  • 摘要: 为探究CDPK基因在木材形成过程中的作用,本研究在基因组水平上对杨树CDPKs基因家族的成员进行分析,找到32个CDPKs及10个CRKs成员。对CDPK基因家族成员在杨树中表达特性进行了分析,发现其家族成员在不同组织、不同发育阶段以及毛白杨次生维管发育不同时期的表达特性不同。分析杨树CDPK基因家族中3个基因PtCPK1、PtCPK6、PtCPK15,其蛋白质一级结构均存在1个跨膜区,其蛋白定位在细胞膜上。
  • [1]

    Trewavas A J, Malhó R. Ca2+ signalling in plant cells: the big network![J]. Current Opinion in Plant Biology, 1998,1(5):428-433.
    [2]

    Knight H, Knight M R. Abiotic stress signalling pathways: specificity and cross-talk[J]. Trends in Plant Science, 2001,6(6):262-267.
    [3]

    Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and Calcineurin B-like Proteins Calcium Sensors for Specific Signal Response Coupling in Plants[J]. Plant Cell, 2002,14(suppl 1):S389-S400.
    [4]

    Reddy A S. Calcium: silver bullet in signaling[J]. Plant Science, 2001,160(3):381-404.
    [5]

    Sanders D, Pelloux J, Brownlee C, et al. Calcium at the crossroads of signaling[J]. Plant Cell, 2002,14(suppl 1):S401-S417.
    [6]

    Snedden W A, Fromm H. Calmodulin as a versatile calcium signal transducer in plants[J]. New Phytologist, 2001,151(1):35-66.
    [7]

    Sanders D, Brownlee C, Harper J F. Communicating with calcium[J]. Plant Cell, 1999,11(4):691-706.
    [8]

    Sebastià C H, Hardin S C, Clouse S D, et al. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate[J]. Archives of Biochemistry and Biophysics, 2004,428(1):81-91.
    [9]

    Hrabak E M, Chan C W, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003,132(2):666-680.
    [10]

    Kolukisaoglu ü, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology, 2004,134(1):43-58.
    [11]

    McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist, 2003,159(3):585-598.
    [12]

    Zielinski R E. Calmodulin and calmodulin-binding proteins in plants[J]. Annual Review of Plant Biology, 1998,49(1):697-725.
    [13]

    Cheng S H, Willmann M R, Chen H C, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family[J]. Plant Physiology, 2002,129(2):469-485.
    [14]

    Yang T, Poovaiah B. Calcium/calmodulin-mediated signal network in plants[J]. Trends in Plant Science, 2003,8(10):505.
    [15]

    Wernimont A K, Amani M, Qiu W, et al. Structures of parasitic CDPK domains point to a common mechanism of activation[J]. Proteins: Structure, Function, and Bioinformatics, 2011,79(3):803-820.
    [16]

    Wernimont A K, Artz J D, Jr Finerty P, et al. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium[J]. Nature Structural & Molecular Biology, 2010,17(5):596-601.
    [17]

    Harper J F, Harmon A. Plants, symbiosis and parasites: a calcium signalling connection[J]. Nature Reviews Molecular Cell Biology, 2005,6(7):555-566.
    [18]

    Abbasi F, Onodera H, Toki S, et al. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath[J]. Plant Molecular Biology, 2004,55(4):541-552.
    [19]

    Asano T, Hakata M, Nakamura H, et al. Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice[J]. Plant Molecular Biology, 2011,75(1-2):179-191.
    [20]

    Asano T, Wakayama M, Aoki N, et al. Overexpression of a calcium-dependent protein kinase gene enhances growth of rice under low-nitrogen conditions[J]. Plant Biotechnology, 2010,27(4):369-373.
    [21]

    Ivashuta S, Liu J, Liu J, et al. RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development[J]. Plant Cell, 2005,17(11):2911-2921.
    [22]

    Zhu S Y, Yu X C, Wang X J, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis[J]. Plant Cell, 2007,19(10):3019-3036.
    [23]

    Lanteri M L, Pagnussat G C, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber[J]. Journal of Experimental Botany, 2006,57(6):1341-1351.
    [24]

    Ray S, Agarwal P, Arora R, et al. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice(Oryza sativa L. ssp. indica)[J]. Molecular Genetics and Genomics, 2007,278(5):493-505.
    [25]

    Du J, Xie H L, Zhang D Q, et al. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach [J]. Proteomics, 2006, 6:881-895.
    [26]

    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997,25(24):4876-4882.
    [27]

    Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011,28(10):2731-2739.
    [28]

    Guo A-Y, Zhu Q-H, Chen X, et al. GSDS: a gene structure display server [J]. Yi Chuan, 2007,29(8):1023.
    [29]

    Barrett T, Edgar R. Gene Expression Omnibus (GEO): Microarray data storage, submission, retrieval, and analysis [J]. Methods in Enzymology, 2006,411:352.
    [30]

    Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) [J]. Science, 2006,313(5793):1596-1604.
    [31]

    Harper J F, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases[J]. Annual Review of Plant Biology, 2004,55:263-288.
    [32]

    Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants[J]. Science, 1996,274(5294):1900-1902.
  • [1] 李煜张进王丽娟卢孟柱 . 杨树PtROP家族基因的表达分析与功能预测. 林业科学研究, 2017, 30(1): 1-9. doi: 10.13275/j.cnki.lykxyj.2017.01.001
    [2] 刘无双杜明会陶维康杨贞诸葛强 . 杨树生物钟节律基因PtCCA1的克隆及表达模式研究. 林业科学研究, 2013, 26(5): 649-654.
    [3] 吴江婷贾辰琳罗志斌邓澍荣 . 毛白杨PtoS1-bZIP亚家族成员的鉴定及表达分析. 林业科学研究, 2024, 37(): 1-11. doi: 10.12403/j.1001-1498.20230333
    [4] 杨海昕刘晓莹詹亚光范桂枝 . 白桦BpAMT基因家族鉴定及表达模式分析. 林业科学研究, 2023, 36(2): 133-143. doi: 10.12403/j.1001-1498.20220242
    [5] 徐向东任逸秋张利李煜王丽娟卢孟柱 . 杨树PIF基因家族成员表达模式研究. 林业科学研究, 2018, 31(2): 19-25. doi: 10.13275/j.cnki.lykxyj.2018.02.003
    [6] 李麟坤梁重钧宁楚龙张薇姜国维张鑫王利兵 . 文冠果种子发育基因表达分析内参基因的选择. 林业科学研究, 2024, 37(2): 1-7. doi: 10.12403/j.1001-1498.20230291
    [7] 宁坤杨洋马述山李慧玉 . 11条白桦BpSPL家族基因的生物信息学和表达分析. 林业科学研究, 2016, 29(5): 646-653.
    [8] 王思宁孙化雨李利超杨意宏徐浩赵韩生高志民 . 毛竹PeDWF4基因克隆及表达模式分析. 林业科学研究, 2018, 31(5): 50-56. doi: 10.13275/j.cnki.lykxyj.2018.05.007
    [9] 吕中睿刘宏张国昀于立洋罗红梅何彩云 . 沙棘UGT基因家族的全基因组鉴定与表达分析. 林业科学研究, 2021, 34(6): 9-19. doi: 10.13275/j.cnki.lykxyj.2021.06.002
    [10] 宣磊王芝权殷云龙华建峰 . 中山杉406ThSHR3基因的克隆、表达及蛋白互作研究. 林业科学研究, 2021, 34(4): 32-39. doi: 10.13275/j.cnki.lykxyj.2021.04.004
    [11] 丁健阮成江关莹管文柯单金友吴雨蹊吴天忠 . 沙棘果肉发育期油脂合成积累的源汇基因协同表达. 林业科学研究, 2017, 30(6): 902-907. doi: 10.13275/j.cnki.lykxyj.2017.06.003
    [12] 赵岩秋周厚君魏凯丽江成宋学勤卢孟柱 . 杨树中Ⅰ类KNOX基因结构、表达与功能分析. 林业科学研究, 2018, 31(4): 118-125. doi: 10.13275/j.cnki.lykxyj.2018.04.017
    [13] 刁姝苏晓华丁昌俊张冰玉 . 小叶杨CCH基因的克隆及其在重金属胁迫下的表达模式. 林业科学研究, 2015, 28(1): 32-36.
    [14] 王凯英高茜孙晓明张琰锋严东辉 . 黑杨应答杨生褐盘二孢专化型侵染的基因差异表达. 林业科学研究, 2017, 30(4): 582-587. doi: 10.13275/j.cnki.lykxyj.2017.04.007
    [15] 李佳益魏继华宋娅婷陈宁张国昀罗红梅刘湘杰何彩云 . 曲古抑菌素A对沙棘扦插苗响应干旱和复水及相关基因表达的影响. 林业科学研究, 2023, 36(5): 111-120. doi: 10.12403/j.1001-1498.20230077
    [16] 赵学彩郑唐春臧丽娜曲冠证 . 杨树类锌指基因ZFL的功能分析. 林业科学研究, 2013, 26(5): 562-570.
    [17] 张冰玉苏晓华李义良张永安曲良建王玉珠田颖川 . 转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定. 林业科学研究, 2005, 18(3): 364-368.
    [18] 王曙光栾维江乔桂荣孙宗修卓仁英 . 适于杨树功能基因组研究的T-DNA激活标签构建. 林业科学研究, 2007, 20(4): 586-590.
    [19] 杜常健张敏周星鲁张磊胡建军 . 杨树杂交群体苗期生长性状的全基因组选择研究. 林业科学研究, 2023, 36(6): 11-19. doi: 10.12403/j.1001-1498.20230083
    [20] 陶粮庞广昌 . 基因分化值和基因调控信息量研究. 林业科学研究, 1989, 2(2): 163-170.
  • 加载中
计量
  • 文章访问数:  3521
  • HTML全文浏览量:  212
  • PDF下载量:  1274
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-20

杨树CDPK基因家族的表达分析及功能预测

  • 1. 林木遗传育种国家重点实验室, 中国林业科学研究院林业研究所, 北京 100091
基金项目:  “十二·五”863计划课题“杨树分子育种与品种创制”(2011AA100201);中国博士后科学基金面上资助(2014M550104)

摘要: 为探究CDPK基因在木材形成过程中的作用,本研究在基因组水平上对杨树CDPKs基因家族的成员进行分析,找到32个CDPKs及10个CRKs成员。对CDPK基因家族成员在杨树中表达特性进行了分析,发现其家族成员在不同组织、不同发育阶段以及毛白杨次生维管发育不同时期的表达特性不同。分析杨树CDPK基因家族中3个基因PtCPK1、PtCPK6、PtCPK15,其蛋白质一级结构均存在1个跨膜区,其蛋白定位在细胞膜上。

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回