• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固氮树种对第二代桉树人工林土壤微生物生物量和结构的影响

黄雪蔓 刘世荣 尤业明

引用本文:
Citation:

固氮树种对第二代桉树人工林土壤微生物生物量和结构的影响

  • 基金项目:

    林业公益行业科技科研重大专项(200804001,201104006)

  • 中图分类号: S792.39

Effects of N-fixing Tree Species on Soil Microbial Biomass and Community Structure of the Second Rotation Eucalyptus Plantations

  • CLC number: S792.39

  • 摘要: 为了探究固氮树种对我国南方亚热带地区第二代桉树人工林土壤微生物生物量和结构影响及其机制,采用磷脂脂肪酸分析方法分别在干季和湿季研究了第二代桉树纯林和第二代桉树/固氮树种混交林的土壤微生物群落生物量和结构。结果表明:与纯林相比,混交林土壤(0~10 cm)的有机碳含量、铵态氮、硝态氮、总氮、凋落物生物量分别提高了17.77%、41.62%、85.59%、25.38%、19.12%,除土壤有机碳外,其它在统计学上均达到了显著性差异(pp<0.05),这种差异主要体现在混交林具有较高的细菌相对百分含量和相对较低的真菌相对百分含量。冗余度分析(RDA)表明:凋落物生物量、凋落物C/N、铵态氮、有机碳含量是驱动我国南方第二代桉树人工林土壤微生物群落结构发生变化的主要因子。此外,壕沟切根试验表明根系及其分泌物可能是第二代桉树人工林土壤微生物的重要碳源。
  • [1]

    FAO. Global Forest Resources Assessment 2000 Main Report[R]. FAO Forestry Paper 140, Food and Agriculture Organization of the United Nations, Rome, 2001, 479.
    [2]

    Jiang Z H, Fei B H, Wang X M. Plantation forests for sustainable wood supply and development in China [J]. Chinese Forestry Science and Technology, 2003, 2(1): 20-23.
    [3]

    Chen D M, Zhang C L, Wu J P, et al. Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in South China [J]. Agricultural and Forest Meteorology, 2011, 151: 1214-1225.
    [4]

    Liu S R, Li X M, Niu L M. The degradation of soil fertility in pure larch plantation in the northeastern part of China [J]. Ecological Engineering, 1998, 10: 75-86.
    [5]

    Sicardi M, Préchac, Frioni L.Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden)plantations in Uruguay [J]. Appl Soil Ecol, 2004, 27: 125-133.
    [6]

    Binkley D, Senock R, Bird S, et al. Twenty years ofstand development in pure and mixed stands of Eucalyptus saligna and nitrogen-fixing Facaltaria mollucana [J]. Forest Ecology and Management, 2003, 182: 93-102.
    [7]

    Forrester D I, Bauhus J, Cowie A L, et al. Mixed-species plantations of Eucalyptus with nitrogen fixing trees: a review[J]. Forest Ecology and Management, 2006, 233: 211-230.
    [8]

    Forrester D I, Bauhus J, Khanna P K. Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii[J]. Forest Ecology and Management, 2004, 193: 81-95.
    [9]

    Kelty M J. The role of species mixtures in plantation forestry [J]. Forest Ecology and Management, 2006, 233:195-204.
    [10]

    Welsh D T. Nitrogen fixation in sea grass meadows: regulation,plant-bacteria interactions and significance to primary productivity [J].Ecology Letters, 2000, 3: 58-71.
    [11]

    Vander Heijden M G A, Bardgett R D, vanStraalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems [J]. Ecology Letters, 2008a, 11: 296-310.
    [12]

    Paul E A, Clark F E, Soil Microbiology and Biochemistry [M]. San Diego, CA, USA: Academic Press. 1997.
    [13]

    Li Q, Allen H L, Wilson C A, et al. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control [J]. Soil Biology & Biochemistry, 2004, 36: 571-579.
    [14]

    Rudrappa L, Purakayastha T J, Singh D, et al. Long-termmanuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical carbon pools in a Typic Haplustept of semi-arid sub-tropical India [J]. Soil Till Res, 2006, 88: 180-192.
    [15]

    Johnson D, Leake J R, Lee J A, et al. Changes in soil microbial biomass and microbial activities in response to 7 years pollutant nitrogen deposition on a heath land and two grasslands [J]. Environment Pollution, 1998, 103: 239-250.
    [16]

    Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreasesforest soil fungal and bacterial biomass in three long-termexperiments [J]. Forest Ecology and Management, 2006, 222: 459-468.
    [17]

    Treseder K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies [J]. Ecology Letters, 2008, 11: 1111-1120.
    [18]

    Hendricks J J, Hendrick R L, Wilson C A, et al. Assessing the Patterns and Controls of Fine Root Dynamics: an Empirical Test and Methodological Review [J]. Journal of Ecology, 2006, 94: 40-57.
    [19]

    Nelson D W, Sommers L E. Total Carbon, Organic Carbon, and Organic Matter, in: second ed.(Eds), Methods of Soil Analysis [M]. American Society of Agronomy Inc., Madison, Wisconsin, 1996, 961-1010.
    [20]

    Bremner J M. Nitrogen-total[M]//Sparks D L (Ed.), Methods of Soil Analysis. SSSA Book Ser, Madison, Wisconsin, 1996, 1085-1122.
    [21]

    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology and Biochemistry, 1987, 19: 703-707.
    [22]

    Bossio D A, Scow K M. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns [J]. Microbial Ecology, 1998, 35: 265-278.
    [23]

    Bligh E, Dyer W. A rapid method of total lipid extraction and purification [J]. Canadian Journal Biochemistry Physiology, 1959, 37: 911-917.
    [24]

    Tunlid A, Hoitink H A J, Low C, et al. Characterization of bacteria that suppress rhizoctonia damping-off in bark compost media by analysis of fatty-acid biomarkers [J]. Applied and Environmental Microbiology, 1989, 55: 1368-1374.
    [25]

    Frostergard A, Bååth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil [J]. Biology and Fertility of Soils, 1996, 22: 59-65.
    [26] 张秋芳,刘 波,林营志,等. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性[J]. 生态学报, 2009, 29(8): 4127-4137.

    [27]

    Kaye J P, Resh S C, Kaye M W, et al. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees [J]. Ecology, 2000, 81: 3267-73.
    [28]

    Resh S, Binkley D, Parrotta J. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species [J]. Ecosystems, 2002, 5: 217-231.
    [29]

    Vitousek P. Ecosystem science and human-environment interactions in the Hawaiian archipelago [J]. Journal of Ecology, 2006, 94: 510-521.
    [30]

    Miltner A, Bombach P, Schmidt-Brücken B, et al. SOM genesis: microbial biomass as a significant source [J]. Biogeochemistry, 2011, DOI 10.1007/s10533-011-9658-z.
    [31]

    Nouvellon Y, Laclau J P, Epron D, et al. Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil [J]. Tree physiology, 2012, 32: 680-695.
    [32] Resh S, Binkley D, Parrotta J. Greater soil carbon sequest湲条整獩?楮渠?浮楤捥牲漠扮楩慴汲?捧潥浮洭畦湩楸瑩祮?挠桴慲牥慥捳琠散牯業獰瑡楲捥獤?慷湩摴?猠漼楥汭 ̄潅牵杣慡湬楹捰?浵慳琼琯敥牭 ̄眠楳瑰桥?湩楥瑳爠潛杊敝渮?慅摣摯楳瑹楳潴湥獭?椬渠′琰眰漲?琠爵漺瀲椱挷愭氲″昱漮爼敢獲琾獛″嬳?崠???捚漠汇漬朠祆?????????㈠??????????????戯牥?嬾??嵐??慴湩杴汩敯祮???????畬渠杲慥瑳数???????礠捯潦爠牳桵楢穴慲汯?捩潣湡瑬爠潦汯獲?潳湴?戠敷汩潴睨朠牤潩畦湦摥?汥楮瑴琠敳牵?煣略慳汳楩瑯祮?孬?嵳???捥潳氠潩杮礠???ぴと?????????そ金??????t Ecology and Management, 2007, 243: 178-186.

    [33]

    Burton J, Chen C R, Xu Z H, et al. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia [J]. J Soils Sediments, 2010, 10: 1267-1277.
    [34]

    Myers R T, Zak D R, White D C, et al. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems [J]. Soil Science Society of America Journal, 2001, 65: 359-367.
    [35]

    Benizri E, Amiaud B. Relationship between plants and soil microbial communities in fertilized grasslands [J]. Soil Biology and Biochemistry, 2005, 37: 2042-2050.
    [36]

    Williamson W M, Wardle D A, Yeates G W. Changes in soilmicrobial and nematode communities during ecosystem decline across along-termchronosequence [J]. Soil Biology and Biochemistry, 2005, 37: 1289-1301.
    [37]

    De Boer W, Folman L B, Summerbell R C, et al. Living in a fungal world: impact of fungi on soil bacterial niche development [J]. FEMS Microbiology Reviews, 2005, 29: 795-811.
    [38]

    Bardgett R. The Biology of Soil-a Community and Ecosystem Approach [M]. Oxford University Press, New York, 2005, 242.
    [39]

    Brant J B, Myrold D D, Sulzman E W. Root controls on soil microbial community structure in forest soils [J]. Oecologia, 2006, 148: 650-659.
    [40]

    Carreiro M M, Sinsabaugh R L, Repert D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J]. Ecology, 2000, 81: 2359-2365.
    [41]

    Carney K M, Hungate B A, Drake B G,et al. Altered soil microbial community at elevated CO(2) leads to loss of soil carbon [J]. Proc Natl Acad Sci U S A, 2007, 104: 4990-4995.
    [42]

    Cusack D F, Silver W L, Torn M S, et al. Cha
  • [1] 刘春华吴东梅刘雨晖陈辉沈宝贵蒋宗垲刘小飞 . 氮沉降对米槠天然林土壤有机碳及微生物群落结构的影响. 林业科学研究, 2021, 34(2): 42-49. doi: 10.13275/j.cnki.lykxyj.2021.02.005
    [2] 牛利敏苗倞婧彭定聪徐秋芳邬奇峰秦华 . 长期粗放经营毛竹林土壤微生物群落演变特征. 林业科学研究, 2017, 30(2): 285-292. doi: 10.13275/j.cnki.lykxyj.2017.02.014
    [3] 法蕾裴顺祥杜满义马淑敏吴莎吴迪王海霞李佳林许基煌 . 油松人工林土壤微生物对结构调整的响应研究. 林业科学研究, 2024, 37(): 1-10. doi: 10.12403/j.1001-1498.20230389
    [4] 韩斐扬周群英陈少雄陈文平李天会吴志华简明 . 2种桉树不同林龄生物量与能量的研究. 林业科学研究, 2010, 23(5): 690-696.
    [5] 马焕成JackA.McConchie陈德强 . 元谋干热河谷相思树种和桉树类抗旱能力分析. 林业科学研究, 2002, 15(1): 96-100.
    [6] 张程欧阳林男陈少雄 . 3种初植密度桉树林分生长、材种出材量及经济效益动态分析. 林业科学研究, 2021, 34(4): 58-65. doi: 10.13275/j.cnki.lykxyj.2021.04.007
    [7] 黄雪蔓刘世荣尤业明 . 第二代桉树人工纯林和混交林土壤呼吸及其组分研究. 林业科学研究, 2014, 27(5): 575-582.
    [8] 吴坤明吴菊英甘四明卢国桓林康銮陈于香 . 桉树种间杂种的比较和选择研究. 林业科学研究, 2002, 15(1): 1-6.
    [9] 刘宏毅陈全助叶小真陈慧洁李慧敏冯丽贞 . 桉树焦枯病菌ABC转运蛋白的鉴定与分析. 林业科学研究, 2017, 30(4): 685-692. doi: 10.13275/j.cnki.lykxyj.2017.04.022
    [10] 马海宾康丽华江业根郑翠梅 . 联合固氮菌对桉树青枯病菌的抑制作用研究. 林业科学研究, 2007, 20(4): 473-476.
    [11] 陈少雄李志辉李天会周国福吴志华周群英 . 不同初植密度的桉树人工林经济效益分析. 林业科学研究, 2008, 21(1): 1-6.
    [12] 钟雅婷邹东霞廖旺姣黄宁罗辑 . 油桐尺蛾肠道菌群与桉树叶片内生菌差异分析. 林业科学研究, 2021, 34(3): 98-107. doi: 10.13275/j.cnki.lykxyj.2021.03.011
    [13] 叶小真杨婕冯丽贞江仲鹏陆芝刘雨菁李丽红陈全助 . 桉树PAL基因克隆及焦枯病菌诱导下的表达分析. 林业科学研究, 2019, 32(6): 99-105. doi: 10.13275/j.cnki.lykxyj.2019.06.013
    [14] 孙长忠沈国舫李吉跃贾黎明 . 我国主要树种人工林生产力现状及潜力的调查研究Ⅱ.桉树、落叶松及樟子松人工林生产力研究. 林业科学研究, 2001, 14(6): 657-667.
    [15] 张青青董醇波邵秋雨陆莹霞董旋梁宗琦韩燕峰 . 杜仲种子内生微生物群落组成及生态功能分析. 林业科学研究, 2023, 36(2): 50-60. doi: 10.12403/j.1001-1498.20220239
    [16] 江业根康丽华马海宾陈应龙 . 金沙江干热河谷适生树种的引种和早期适应性研究. 林业科学研究, 2007, 20(3): 423-427.
    [17] 丘醒球余倩珠张少翃谭绍满 . 桉树插条生根解剖研究*. 林业科学研究, 1995, 8(2): 170-176.
    [18] 仲崇禄弓明钦陈羽王凤珍关则寇Bernard Dell . 赤桉、细叶桉和巨桉幼林施磷量的确定. 林业科学研究, 2000, 13(4): 377-384.
    [19] 杨志成叶长青封建文蔡仁和 . 四川桤木幼林施用磷肥效应*. 林业科学研究, 1995, 8(1): 112-114.
    [20] 吴坤明吴菊英徐建民甘四明 . 桉树杂交育种的研究. 林业科学研究, 1996, 9(5): 504-509.
  • 加载中
计量
  • 文章访问数:  3186
  • HTML全文浏览量:  190
  • PDF下载量:  1199
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-28

固氮树种对第二代桉树人工林土壤微生物生物量和结构的影响

  • 1. 中国林业科学研究院森林环境与保护研究所, 国家林业局森林生态环境重点实验室, 北京 100091
  • 2. 北 京林业大学森林培育与保护教育部重点实验室, 北京 100083
基金项目:  林业公益行业科技科研重大专项(200804001,201104006)

摘要: 为了探究固氮树种对我国南方亚热带地区第二代桉树人工林土壤微生物生物量和结构影响及其机制,采用磷脂脂肪酸分析方法分别在干季和湿季研究了第二代桉树纯林和第二代桉树/固氮树种混交林的土壤微生物群落生物量和结构。结果表明:与纯林相比,混交林土壤(0~10 cm)的有机碳含量、铵态氮、硝态氮、总氮、凋落物生物量分别提高了17.77%、41.62%、85.59%、25.38%、19.12%,除土壤有机碳外,其它在统计学上均达到了显著性差异(pp<0.05),这种差异主要体现在混交林具有较高的细菌相对百分含量和相对较低的真菌相对百分含量。冗余度分析(RDA)表明:凋落物生物量、凋落物C/N、铵态氮、有机碳含量是驱动我国南方第二代桉树人工林土壤微生物群落结构发生变化的主要因子。此外,壕沟切根试验表明根系及其分泌物可能是第二代桉树人工林土壤微生物的重要碳源。

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回