• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烂皮病菌侵染对新疆杨光合特性及碳水代谢的影响

李金鑫 张一南 苗瑞芬 邢军超 李敏 申宛娜 王黎 赵嘉平

引用本文:
Citation:

烂皮病菌侵染对新疆杨光合特性及碳水代谢的影响

    通讯作者: 赵嘉平, zhaojiaping@caf.ac.cn
  • 中图分类号: S763.15

Effects of Valsa sordida Infection on Photosynthetic Characteristics and Carbon-Water Metabolism in Populus alba var. pyramidalis

    Corresponding author: ZHAO Jia-ping, zhaojiaping@caf.ac.cn
  • CLC number: S763.15

  • 摘要: 目的 研究烂皮病菌侵染对新疆杨叶片光合响应以及水分代谢特征的影响,探讨病菌侵染下杨树光合作用与水分代谢之间的相关性,为杨树烂皮病的发生及控制提供理论及实验依据。 方法 以1年生新疆杨为植物材料,采用枝干表皮微环割方法接种烂皮病菌,研究烂皮病菌侵染10~30天新疆杨的叶片气体交换、叶绿素荧光、根部非结构性碳水化合物以及叶片正午水势等指标,分析蒸腾速率、正午水势分别与气孔导度以及水汽压亏缺之间的关系。 结果 与环割对照相比,烂皮病菌侵染显著降低新疆杨叶片的净光合速率(62.45%~91.05%)、气孔导度(64.19%~87.43%)、光系统Ⅱ的最大光化学效率(19.13%~42.79%)、实际光化学效率(46.04%~69.93%)、电子传递速率(52.58%~68.03%)等参数;显著抑制新疆杨叶片最大净光合速率(76.94%)、光饱和点(40.40%)及表观量子效率(46.09%),并显著升高暗呼吸速率(82.14%)及光补偿点(242.42%)。烂皮病菌侵染显著降低根部可溶性糖(35.06%~44.50%,20~30天)及淀粉含量(35.77%~58.39%,10~30天)。烂皮病菌侵染显著抑制叶片的蒸腾速率(57.36%~80.49%)、水分利用效率(24.92%~70.55%)以及升高水汽压亏缺(13.59%~33.65%)和叶片正午水势(39.74%,20天)。相关性分析结果表明蒸腾速率与气孔导度呈正相关,与水汽压亏缺呈负相关;叶片正午水势与气孔导度及水汽压亏缺均无线性关系,烂皮病菌侵染导致的气孔关闭与叶片水分状况无关。 结论 烂皮病菌侵染下新疆杨叶片净光合速率降低的主要原因是叶片光能转化、光合电子传递及光能利用受阻。烂皮病菌侵染并未造成新疆杨叶部水分胁迫,甚至有一定的改善作用;同时,影响寄主根系的碳积累,导致根部非结构性碳水化合物含量始终在胁迫初期时的水平。
  • 图 1  烂皮病菌侵染对新疆杨叶片光合特性的影响

    Figure 1.  Effects of V. sordida infection on photosynthetic characteristics of P. alba var. pyramidalis leaves

    图 2  烂皮病菌侵染下新疆杨苗木光合响应曲线

    Figure 2.  Photosynthetic response curve of P. alba var. pyramidalis seedlings under the infection of V. sordida

    图 3  烂皮病菌侵染下新疆杨叶绿素荧光参数

    Figure 3.  The chlorophyll fluorescence parameters of P. alba var. pyramidalis under the infection of V. sordida

    图 4  烂皮病菌侵染下新疆杨根部非结构性碳水化合物含量

    Figure 4.  Non-structural carbohydrate content in roots of P. alba var. pyramidalis seedlings under the infection of V. sordida

    图 5  烂皮病菌侵染下新疆杨叶片蒸腾速率、水分利用效率、水汽压亏缺及叶片正午水势

    Figure 5.  Transpiration rate, water use efficiency, vapor pressure deficit and leaf water potential of P. alba var. pyramidalis leaves under the infection of V. sordida

    图 6  烂皮病菌侵染下新疆杨各生理指标的相关性分析

    Figure 6.  Correlation analysis of physiological indexes of P. alba var. pyramidalis under the infection of V. sordida

    图 7  最大光化学效率、实际光化学效率及电子传递速率与净光合速率的相关性

    Figure 7.  Correlations between the maximum photochemical efficiency, actual photochemical efficiency, electron transport rate and net photosynthetic rate

    表 1  烂皮病菌侵染下新疆杨苗木光响应曲线拟合参数

    Table 1.  The light response curve parameters of P. alba var. pyramidalis seedlings under the infection of V.sordida

    处理 TreatmentRd/(μmol·m−2·s−1)AQY/(μmol /μmol photons)Pnmax/(μmol·m−2·s−1)LCP/(μmol·m−2·s−1)LSP/(μmol·m−2·s−1)
    Vso 2.04 ± 0.03 a 0.0269 ± 0.01 b 4.19 ± 0.84 b 79.1 ± 21.17 a 237.00 ± 38.20 b
    Ctrl 1.12 ± 0.14 b 0.049 9 ± 0.01 a 18.17 ± 0.32 a 23.1 ± 5.35 b 397.67 ± 79.43 a
    UC 1.07 ± 0.12 b 0.041 5 ± 0.01 a 19.63 ± 0.97 a 26.4 ± 6.5 b 505.33 ± 57.95 a
    注:数据为平均值 ± 标准误(n = 7),不同字母表示处理间的显著差异(P < 0.05,ANOVA)。
    Note: Data indicate the mean ± standard error (n = 7). Different letters indicate significant (P < 0.05, ANOVA) differences between the treatments.
    下载: 导出CSV
  • [1]

    Christian C, Frank F, Karl-Heinz H, et al. Photosynthetic and leaf water potential responses of Alnus glutinosa saplings to stem-base inoculaton with Phytophthora alni subsp. alni[J]. Tree Physiology, 2008, 28(11): 1703-1711. doi: 10.1093/treephys/28.11.1703
    [2]

    Savi T, Casolo V, Dal Borgo A, et al. Drought-induced dieback of Pinus nigra: a tale of hydraulic failure and carbon starvation[J]. Conservation Physiology, 2019, 7(1): coz012.
    [3]

    Blackman C J, Creek D, Maier C, et al. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure[J]. Tree Physiology, 2019, 39(6): 910-924. doi: 10.1093/treephys/tpz016
    [4]

    Balducci L, Deslauriers A, Giovannelli A, et al. How do drought and warming influence survival and wood traits of Picea mariana saplings?[J]. Journal of Experimental Botany, 2015, 66(1): 377-389. doi: 10.1093/jxb/eru431
    [5] 李 捷, 冯丽丹, 王有科, 等. 尖镰孢菌(Fusarium oxysporum)侵染对枸杞光合和荧光参数的影响[J]. 中国沙漠, 2015, 35(6):1565-1572. doi: 10.7522/j.issn.1000-694X.2015.00126

    [6]

    Berger S, Sinha A K, Roitsch T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions[J]. Journal of Experimental Botany, 2007, 58(15-16): 4019-4026. doi: 10.1093/jxb/erm298
    [7]

    Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice[J]. Annals of Botany, 2007, 99(6): 1161-1173. doi: 10.1093/aob/mcm052
    [8]

    Mathur S, Agrawal D, Jajoo A. Photosynthesis: response to high temperature stress[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 137: 116-126. doi: 10.1016/j.jphotobiol.2014.01.010
    [9]

    Fermín G, José G J, Corina G. Plant-pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae)[J]. Tree Physiology, 2018, 38: 925-935. doi: 10.1093/treephys/tpx174
    [10]

    Franziska E, Erica P, Heiko V, et al. Rust infection of black poplar trees reduces photosynthesis but does not affect isoprene biosynthesis or emission[J]. Frontiers in Plant Science, 2018, 9: 1733. doi: 10.3389/fpls.2018.01733
    [11]

    Gruber B R, Kruger E L, McManus P S. Effects of cherry leaf spot on photosynthesis in tart cherry 'Montmorency' foliage[J]. Phytopathology, 2012, 102(7): 656-661. doi: 10.1094/PHYTO-12-11-0334
    [12]

    Rohrs-Richey J K, Mulder C P, Winton L M, et al. Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress[J]. New Phytologis, 2011, 189(1): 295-307. doi: 10.1111/j.1469-8137.2010.03472.x
    [13]

    Cerqueira A, Alves A, Berenguer H, et al. Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression[J]. Plant Physiology and Biochemistry., 2017, 114: 88-99. doi: 10.1016/j.plaphy.2017.02.020
    [14]

    Hossain M, Veneklaas E J, Hardy G, et al. Tree host-pathogen interactions as influenced by drought timing: linking physiological performance, biochemical defence and disease severity[J]. Tree Physiology, 2019, 39(1): 6-18. doi: 10.1093/treephys/tpy113
    [15]

    Xing J, Li P, Zhang Y, et al. Fungal pathogens of canker disease trigger canopy dieback in poplar saplings by inducing functional failure of the phloem and cambium and carbon starvation in the xylem[J]. Physiological and Molecular Plant Pathology, 2020, 112: 101523. doi: 10.1016/j.pmpp.2020.101523
    [16]

    Lachenbruch B, Zhao J P. Effects of phloem on canopy dieback, tested with manipulations and a canker pathogen in the Corylus avellana/Anisogramma anomala host/pathogen system[J]. Tree Physiology, 2019, 39(7): 1086-1098. doi: 10.1093/treephys/tpz027
    [17]

    Aguade D, Poyatos R, Gomez M, et al. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.)[J]. Tree Physiology, 2015, 35(3): 229-242. doi: 10.1093/treephys/tpv005
    [18]

    Zhao D, Glynn N C, Glaz B, et al. Orange rust effects on leaf photosynthesis and related characters of sugarcane.[J]. Plant Disease, 2011, 95(6): 640-646. doi: 10.1094/PDIS-10-10-0762
    [19]

    Sevanto S, McDowell N G, Dickman L T, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses[J]. Plant, Cell & Environment, 2014, 37(1): 153-161.
    [20]

    McDowell N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiology, 2011, 155(3): 1051-1059. doi: 10.1104/pp.110.170704
    [21]

    Sala A, Piper F, Hoch G. Physiological mechanisms of drought-induced tree mortality are far from being resolved[J]. New Phytologist, 2010, 186(2): 274-281. doi: 10.1111/j.1469-8137.2009.03167.x
    [22]

    McDowell N G, Sevanto S. The mechanisms of carbon starvation: how, when, or does it even occur at all?[J]. New Phytologist, 2010, 186(2): 264-266. doi: 10.1111/j.1469-8137.2010.03232.x
    [23]

    Jordi M V. Carbon storage in trees: pathogens have their say[J]. Tree Physiology, 2014, 34(3): 215-217. doi: 10.1093/treephys/tpu010
    [24]

    Jonàs O, Jan S, Jordi M-V. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality[J]. The New Phytologist, 2014, 203(4): 1028-35. doi: 10.1111/nph.12857
    [25]

    Bortolami G, Farolfi E, Badel E, et al. Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity[J]. Journal of Experimental Botany, 2021, 72(10): 3914-3928. doi: 10.1093/jxb/erab117
    [26]

    Li P, Liu W, Zhang Y, et al. Fungal canker pathogens trigger carbon starvation by inhibiting carbon metabolism in poplar stems[J]. Scitific Reports, 2019, 9(1): 10111. doi: 10.1038/s41598-019-46635-5
    [27]

    Júnior A F N, Ribeiro R V, Appezzato-da-Glória B, et al. Phakopsora euvitis causes unusual damage to leaves and modifies carbohydrate metabolism in grapevine[J]. Frontiers in Plant Science, 2017, 8: 1675. doi: 10.3389/fpls.2017.01675
    [28] 周艳威, 陈金慧, 鲁 路, 等. 杂交鹅掌楸体胚再生植株淹水胁迫下叶片超微结构及光合特性变化[J]. 林业科学, 2018, 54(3):19-28.

    [29]

    Holzwarth A R, Lenk D, Jahns P. On the analysis of non-photochemical chlorophyll fluorescence quenching curves[J]. Biochimica et Biophysica Acta, 2013, 1827(6): 786-792. doi: 10.1016/j.bbabio.2013.02.011
    [30]

    Muthuchelian K, Porta N L, Bertamini M, et al. Cypress canker induced inhibition of photosynthesis in field grown cypress (Cupressus sempervirens L.) needles[J]. Physiological and Molecular Plant Pathology, 2005, 67(1): 33-39. doi: 10.1016/j.pmpp.2005.08.007
    [31]

    Watling J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum[J]. Plant Physiology, 2000, 123(3): 1143-1152. doi: 10.1104/pp.123.3.1143
    [32]

    Kitajima M K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J]. Journal of Ecology, 2007, 95(2): 383-395. doi: 10.1111/j.1365-2745.2006.01207.x
    [33]

    Chantuma P, Lacointe A, Kasemsap P, et al. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping[J]. Tree Physiology, 2009, 29(8): 1021-1031. doi: 10.1093/treephys/tpp043
    [34]

    Paap T, Burgess T I, Calver M, et al. A thirteen‐year study on the impact of a severe canker disease of Corymbia calophylla, a keystone tree in Mediterranean‐type forests[J]. Forest Pathology, 2017, 47(1): 12292.
    [35]

    Porta N L, Capretti P, Thomsen I M, et al. Forest pathogens with higher damage potential due to climate change in Europe[J]. Canadian Journal of Plant Pathology, 2008, 30(2): 177-195. doi: 10.1080/07060661.2008.10540534
  • [1] 段爱国保尔江张建国 . 水分胁迫下华北地区主要造林树种离体枝条叶片的叶绿素荧光参数. 林业科学研究, 2005, 18(5): 578-584.
    [2] 夏江宝张淑勇张光灿周泽福陈安强 . 土壤水分对金银花叶片气体交换参数及水分利用效率的影响. 林业科学研究, 2008, 21(6): 803-807.
    [3] . 干旱胁迫对杨树气体交换与荧光参数的影响. 林业科学研究, 2010, 23(2): 202-208.
    [4] 何季吴波贾子毅曹燕丽姚斌 . 白刺光合生理特性对人工模拟增雨的响应. 林业科学研究, 2013, 26(1): 58-64.
    [5] 施征白登忠张维诚肖文发 . 青海云杉休眠前后非结构性碳水化合物含量随海拔变化. 林业科学研究, 2017, 30(6): 908-915. doi: 10.13275/j.cnki.lykxyj.2017.06.004
    [6] 杨朝瀚王艳云周泽福张光灿 . 黄土丘陵区杠柳叶片气体交换过程对土壤水分的响应. 林业科学研究, 2006, 19(2): 231-234.
    [7] 樊志颖陈康李江荣汪汉驹潘开文 . 藏东南色季拉山急尖长苞冷杉非结构性碳水化合物时空动态特征. 林业科学研究, 2022, 35(5): 123-133. doi: 10.13275/j.cnki.lykxyj.2022.005.014
    [8] 刘永安骆晓铭魏建国杨洪彬远藤利明胡庭兴 . 不同水分条件下麻疯树幼苗的光合生理适应性研究. 林业科学研究, 2010, 23(1): 108-113.
    [9] . 青檀光合作用和荧光特性对岩溶区不同生境的响应. 林业科学研究, 2009, 22(4): -.
    [10] 张淑勇刘致远周泽福张光灿 . 黄土丘陵区土壤水分对山桃光合及蒸腾等生理参数的影响. 林业科学研究, 2008, 21(2): 222-226.
    [11] 岳剑云杜常健纪敬姚侠妹常二梅江泽平施明达史胜青 . 银杏枝条部位和年龄对不定根形成的影响及其与非结构碳水化合物含量的关系. 林业科学研究, 2018, 31(5): 153-158. doi: 10.13275/j.cnki.lykxyj.2018.05.021
    [12] 褚建民孟平张劲松高峻 . 土壤水分胁迫对欧李幼苗光合及叶绿素荧光特性的影响. 林业科学研究, 2008, 21(3): 295-300.
    [13] . 水分胁迫下2种沙枣的抗旱性比较. 林业科学研究, 2009, 22(3): -.
    [14] 李荣生许煌灿尹光天杨锦昌李双忠 . 植物水分利用效率的研究进展. 林业科学研究, 2003, 16(3): 366-371.
    [15] 李国泰 . 8种园林树种光合作用特征与水分利用效率比较. 林业科学研究, 2002, 15(3): 291-296.
    [16] 何春霞张劲松黄辉孟平樊巍 . 豫东平原3种模式杨树-小麦复合系统水分利用效率的研究. 林业科学研究, 2015, 28(5): 660-668.
    [17] 张蓝霄李雅婧胡晓创孙守家张劲松蔡金峰孟平 . 基于Biome-BGC模型的刺槐人工林生产力和内在水分利用效率研究. 林业科学研究, 2023, 36(3): 1-10. doi: 10.12403/j.1001-1498.20230015
    [18] 徐斌朱报著潘文张方秋杨会肖 . 广东含笑的光响应特性及其最适模型研究. 林业科学研究, 2017, 30(4): 604-609. doi: 10.13275/j.cnki.lykxyj.2017.04.010
    [19] . 光合作用光响应曲线模型选择及低光强属性界定. 林业科学研究, 2009, 22(6): 765-771.
    [20] 郑益兴彭兴民吴疆翀张燕平 . 印楝种源不同生长季节冠层间的光响应特征. 林业科学研究, 2011, 24(2): 176-183.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4282
  • HTML全文浏览量:  2552
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 录用日期:  2021-02-06
  • 网络出版日期:  2021-07-31
  • 刊出日期:  2021-10-20

烂皮病菌侵染对新疆杨光合特性及碳水代谢的影响

    通讯作者: 赵嘉平, zhaojiaping@caf.ac.cn
  • 1. 中国林业科学研究院林业新技术研究所,北京 100091
  • 2. 内蒙古五原县林业和草原局种苗站,内蒙古 巴彦淖尔 015100
  • 3. 中国林业科学研究院林业研究所,北京 100091

摘要:  目的 研究烂皮病菌侵染对新疆杨叶片光合响应以及水分代谢特征的影响,探讨病菌侵染下杨树光合作用与水分代谢之间的相关性,为杨树烂皮病的发生及控制提供理论及实验依据。 方法 以1年生新疆杨为植物材料,采用枝干表皮微环割方法接种烂皮病菌,研究烂皮病菌侵染10~30天新疆杨的叶片气体交换、叶绿素荧光、根部非结构性碳水化合物以及叶片正午水势等指标,分析蒸腾速率、正午水势分别与气孔导度以及水汽压亏缺之间的关系。 结果 与环割对照相比,烂皮病菌侵染显著降低新疆杨叶片的净光合速率(62.45%~91.05%)、气孔导度(64.19%~87.43%)、光系统Ⅱ的最大光化学效率(19.13%~42.79%)、实际光化学效率(46.04%~69.93%)、电子传递速率(52.58%~68.03%)等参数;显著抑制新疆杨叶片最大净光合速率(76.94%)、光饱和点(40.40%)及表观量子效率(46.09%),并显著升高暗呼吸速率(82.14%)及光补偿点(242.42%)。烂皮病菌侵染显著降低根部可溶性糖(35.06%~44.50%,20~30天)及淀粉含量(35.77%~58.39%,10~30天)。烂皮病菌侵染显著抑制叶片的蒸腾速率(57.36%~80.49%)、水分利用效率(24.92%~70.55%)以及升高水汽压亏缺(13.59%~33.65%)和叶片正午水势(39.74%,20天)。相关性分析结果表明蒸腾速率与气孔导度呈正相关,与水汽压亏缺呈负相关;叶片正午水势与气孔导度及水汽压亏缺均无线性关系,烂皮病菌侵染导致的气孔关闭与叶片水分状况无关。 结论 烂皮病菌侵染下新疆杨叶片净光合速率降低的主要原因是叶片光能转化、光合电子传递及光能利用受阻。烂皮病菌侵染并未造成新疆杨叶部水分胁迫,甚至有一定的改善作用;同时,影响寄主根系的碳积累,导致根部非结构性碳水化合物含量始终在胁迫初期时的水平。

English Abstract

  • 环境胁迫以及病原菌侵染会引起植物光合作用以及水分代谢失衡[1-4]。病菌侵染往往会导致植物组织坏死、净光合速率显著降低、碳同化减少、生长放缓甚至出现植物死亡的现象[1, 5-8]。叶锈病、叶斑病等通过调节气孔开度以及抑制酶和光合作用中心改变气体交换[9-11];枝干溃疡类病害也远程改变寄主植物的叶部光合特征[12-14]。本课题组前期研究表明溃疡病菌(Botryosphaeria dothidea)、烂皮病菌(Valsa sordida)侵染早中期,新疆杨叶片净光合速率和气孔导度显著下降[15]。病菌对光合作用的抑制会减少光合产物的合成,同时,虽然溃疡类病害主要发生于枝干韧皮部,但也能侵入木质部,并最终在侵染点周围形成坏死性病斑。因此我们推测,溃疡病害的发生不仅可以抑制韧皮部碳水化合物的长距离运输,造成枝干碳饥饿[15],也可能阻碍木质部水分的向上运输[16]

    病原菌可以通过不同的途径影响植物水分代谢,如根腐病原菌可以破坏植物根系,减少水分的吸收[17],而叶部病原真菌通过调控气孔开度影响植物的水分散失[18]。枝干溃疡类病菌侵染会造成气孔导度降低,进而影响寄主叶片的蒸腾速率和水分利用效率[12, 14]。研究发现,在榛子(Corylus avellana L.)和溃疡类病菌(Anisogramma anomal)的互作系统中,临近溃疡病区域的水分运输会受到限制,进而造成溃疡病区域远端的冠层枝枯[16];溃疡病菌(Quambalaria coyrecup)引起桉树(Corymbia calophylla Lindl.)边材功能丧失,进而降低全株导水率[14],即病原真菌造成林木衰亡的原因之一是水力学失败。

    碳饥饿、水力学失败以及两者共同作用造成的韧皮部运输功能失败(不包括结构破坏)是干旱导致的树木衰亡的3种可能途径[19-20]。研究发现,碳饥饿和水力学失败之间彼此影响、相互作用,水分胁迫可以抑制韧皮部碳水化合物的运输,碳水化合物储量下降可能会通过再填充受损导致水力学失败,二者独立或者联合作用提高干旱胁迫下植物的死亡率[20-22]。研究表明,病原菌胁迫引起的林木衰亡与碳饥饿或者水力学失败有关[14-16, 23-26]。然而,在病害发展的不同阶段,病菌导致树木死亡的具体方式可能并不相同。我们的研究发现,溃疡病菌侵染通过抑制碳代谢途径整体基因的表达,诱导早期碳饥饿[26];进一步研究发现,病原真菌侵染诱导早中期枝干韧皮部运输功能障碍,但水分运输状况没有明显的改变。然而,多项研究发现,在溃疡类病害发生晚期,树木水分运输状况发生显著改变[14, 16],但是,我们认为,病害发生后期出现的水力学失败是碳饥饿导致的结果,而非引起树木衰亡的主要原因。因此,溃疡类病害发生的生理机制仍有很多亟待解决的问题。

    本研究以1年生新疆杨(Populus alba Linn. var. pyramidalis)为植物材料,采用微环割方法接种杨树烂皮病菌,通过测定气体交换参数、光响应曲线、叶绿素荧光、叶片水势以及根部非结构性碳水化合物含量等指标,研究寄主植物光合机制对病害胁迫的响应,枝干病菌侵染对根部碳代谢特征的影响等,揭示烂皮病菌侵染下杨树碳水代谢特征的变化,为树木溃疡类病害的有效控制奠定理论及实验基础。

    • 本研究以1年生新疆杨扦插苗为植物材料,扦插幼苗在含有混合基质(草炭土∶珍珠岩 = 6∶1)的塑料花盆中栽培,培养于中国林科院林业新技术研究所植物生理研究室试验地。烂皮病菌(Valsa sordida)菌株CZC[15]实验菌株活化后接种于PDA培养基(pH 6.0),25℃暗培养7天后接种新疆杨。

    • 选取生长健壮、无病虫害、长势一致的54株新疆杨1年生幼苗作为实验材料。实验设置表皮环割接种烂皮病菌(V. sordida)菌株CZC(Vso)、表皮环割接种空白PDA对照(Ctrl)和未环割对照(UC)共3个处理,每个处理18株苗木。Vso处理方法:用75%酒精对枝干表面灭菌,锋利刀片剥开并去掉距基部30 cm处杨树枝干环周表皮,高度为1 cm,接种PDA培养基上培养1周的V. sordida CZC菌块(长3 cm,宽1 cm),封口膜包裹保湿培养;Ctrl处理方法:将CZC菌块更换为空白PDA培养基,其它操作相同。

      分别在接种后10、20、30天(dpi)测定叶片生理指标(光合及气体交换参数、叶绿素荧光参数、正午水势)并收集根部样品以测定非结构性碳水化合物含量,每个处理每次测定6个生物学重复。光合测定在上午9:00—11:00完成,正午水势在光合参数测定之后完成。试验期间保持充足的灌水以及适当的管理。

    • 采用Li-6400XT光合仪(LI-COR,Lincoln,USA)测定苗木净光合速率(Pn)、气孔导度(Gs)等指标。测定时采用LED红蓝光源以及环境CO2浓度,设置光合有效辐射(PAR)1 500 μmol·m−2·s−1、气体流速500 μmol·s−1。光合测定采用杨树自顶部向下第4~6片成熟叶。根据公式(1)、(2),计算水分利用效率(WUE)和气孔限制值(Ls):

      $ WUE={P}_{\rm{n}}/Tr $

      (1)

      $ {L_{\rm{s}}} = 1 - {C_{\rm{i}}}/{C_{\rm{a}}} \;\;\left( {{C_{\rm{a}}}{\text{为空气中}}{\rm{C}}{{\rm{O}}_2}{\text{浓度}}} \right) $

      (2)
    • 光响应曲线测定于接种后15天进行,所用光合仪同上,测定时间为上午9:00—12:00。自然光对植物叶片充分诱导后,在2 000、1 800、1 600、1 400、1 200、1 000、800、600、400、200、100、50、0 μmol·m−2·s−1光合有效辐射梯度下,测定植株的净光合速率(Pn),每个处理3个生物学重复。CO2浓度设置为400 μmol·mol−1,叶室温度和相对湿度同环境参数。

      采用非直角双曲线模型,根据公式(3)拟合光合响应曲线:

      $ {P_{\rm{n}}} = \frac{{\alpha I + {P_{{\rm{nmax}}}} - \sqrt {{{(\alpha I + {P_{{\rm{nmax}}}})}^2} - 4\theta \alpha I{P_{{\rm{nmax}}}}} }}{{2\theta }} - {R_{\rm{d}}} $

      (3)

      其中,Pn为净光合速率(μmol·m−2·s−1),α为光合响应曲线的初始量子效率,I为光合有效辐射,Pnmax为最大净光合速率(μmol·m−2·s−1),θ为光响应曲线曲角(0 < θ ≤ 1),Rd为暗呼吸速率(μmol·m−2·s−1)。

    • 叶绿素荧光参数采用Li-6400XT荧光叶室进行测定。将叶片充分暗适应30 min,测定其初始荧光(Fo)、最大荧光(Fm)和PSII最大光化学效率(Fv/Fm),以及光适应下(20~30 min)的稳态荧光(Fs)、光下最大荧光(Fm)和光下最小荧光(Fo')。叶绿素荧光与光合参数测定选用同一叶片。根据公式(4)、(5)、(6),计算PSII的实际光化学效率(ΦPSII)、光化学猝灭系数(qP)和电子传递速率(ETR):

      $ {\varPhi }_{\rm{PSII}}=({F}_{{\rm{m}}{'}}-{F}_{{\rm{s}}})/{F}_{{\rm{m}}{'}} $

      (4)

      $ qP=({F}_{{\rm{m}}{'}}-{F}_{{\rm{s}}})/({F}_{{\rm{m}}{'}}-{F}_{{\rm{o}}{'}}) $

      (5)

      $ ETR={\varPhi }_{\rm{PSII}}\times {{PFD}}\times 0.84\times 0.5 $

      (6)

      其中,PFD为光子通量密度(μmol·m−2·s−1)。

    • 采集植株细根,杀青并烘干至恒质量,研磨、100目筛过滤后,采用植物可溶性糖和淀粉试剂盒(BC0035 和BC0705;Solarbio Life Sciences)测定接种后10、20、30 d非结构性碳水化合物含量。每个处理测定6个生物学重复。

    • 采用SAPSII植物水势压力室(Model 3115, Sec Instruments, USA)测定叶片正午水势(Midday water potential, Ψmd)。水势与光合参数、叶绿素荧光测定选用同一叶片,水势测定进行3次,分别在接种后10、20、30 d的12:00—12:30完成。

    • 采用R 3.5.0进行数据统计以及可视化分析,不同处理之间的差异显著性采用One-way ANOVA分析,并用Tukey检验(P < 0.05)进行多重比较,各项统计数据均为平均值 ± 标准误差。本研究对GsCiPnGsVPDTr,以及Fv/FmΦPSIIETRPn作回归分析,所有拟合均进行T检验(P < 0.001)。

    • 除10 dpi(接种后10天)之外,环割对照(Ctrl)和未环割对照(UC)植株的净光合速率(Pn)和气孔导度(Gs)无显著差异(ANOVA,P > 0.05)。与环割对照相比,烂皮病菌侵染(Vso)导致新疆杨叶片的PnGs(10~30 dpi)显著降低,胞间CO2浓度(Ci)(20~30 dpi)显著升高,气孔限制值(Ls)(20~30 dpi)显著降低(ANOVA,P < 0.05),且Ls随处理时间呈缓慢下降的趋势,30 dpi时达到最低值(下降66.5%)。相关性分析揭示PnGs呈正相关(R2 = 0.91,P < 0.001),PnCi呈负相关(R2 = 0.49,P < 0.001)(图1),该结果说明烂皮病菌主要以非气孔限制方式抑制新疆杨的光合作用。

      图  1  烂皮病菌侵染对新疆杨叶片光合特性的影响

      Figure 1.  Effects of V. sordida infection on photosynthetic characteristics of P. alba var. pyramidalis leaves

    • 图2所示,随光合有效辐射(PAR)的增加,环割对照(Ctrl)、未环割对照(UC)和烂皮病菌侵染(VSo)植株的净光合速率(Pn)均呈上升的趋势;Ctrl和UC对照的光响应无显著差异(ANOVA,P > 0.05);除0和50 μmol·m−2·s−1光强外,经VSo处理的植株净光合速率(Pn)显著低于Ctrl和UC对照(ANOVA,P < 0.05)。利用非直角双曲线模型拟合曲线并计算相应参数,结果显示烂皮病菌侵染显著降低新疆杨叶片最大净光合速率(Pnmax)(76.9%)及表观量子效率(AQY)(46.1%),并显著升高暗呼吸速率(Rd)(82.1%)及光补偿点(LCP)(242.4%)(ANOVA,P < 0.05)(表1)。此外,病菌侵染条件下新疆杨叶片光饱和点(LSP)相比对照显著降低(P < 0.05)(表1)。以上结果表明,烂皮病菌侵染严重抑制新疆杨叶片的光合以及利用弱光的能力,同时加快暗呼吸速率。

      图  2  烂皮病菌侵染下新疆杨苗木光合响应曲线

      Figure 2.  Photosynthetic response curve of P. alba var. pyramidalis seedlings under the infection of V. sordida

      表 1  烂皮病菌侵染下新疆杨苗木光响应曲线拟合参数

      Table 1.  The light response curve parameters of P. alba var. pyramidalis seedlings under the infection of V.sordida

      处理 TreatmentRd/(μmol·m−2·s−1)AQY/(μmol /μmol photons)Pnmax/(μmol·m−2·s−1)LCP/(μmol·m−2·s−1)LSP/(μmol·m−2·s−1)
      Vso 2.04 ± 0.03 a 0.0269 ± 0.01 b 4.19 ± 0.84 b 79.1 ± 21.17 a 237.00 ± 38.20 b
      Ctrl 1.12 ± 0.14 b 0.049 9 ± 0.01 a 18.17 ± 0.32 a 23.1 ± 5.35 b 397.67 ± 79.43 a
      UC 1.07 ± 0.12 b 0.041 5 ± 0.01 a 19.63 ± 0.97 a 26.4 ± 6.5 b 505.33 ± 57.95 a
      注:数据为平均值 ± 标准误(n = 7),不同字母表示处理间的显著差异(P < 0.05,ANOVA)。
      Note: Data indicate the mean ± standard error (n = 7). Different letters indicate significant (P < 0.05, ANOVA) differences between the treatments.
    • 接种后10 d,环割对照(Ctrl)植株的实际光化学效率(ΦPSII)、电子传递速率(ETR)及光化学猝灭系数(qP)显著高于未环割对照(UC)植株(ANOVA,P < 0.05),除此之外,试验期间Ctrl和UC对照植株的PSII最大光化学效率(Fv/Fm)、ΦPSIIETRqP均无显著差异。除30 dpi的qP之外,烂皮病菌侵染(VSo)显著降低新疆杨叶片的Fv/FmΦPSIIETRqP(ANOVA,P < 0.05)(图3)。以上结果揭示烂皮病菌侵染导致新疆杨叶片PSII与PSI之间的电子传递受阻、光能转化效率降低及天线色素捕获的光能用于光化学反应的份额减少,进而导致了新疆杨叶片净光合速率的降低。

      图  3  烂皮病菌侵染下新疆杨叶绿素荧光参数

      Figure 3.  The chlorophyll fluorescence parameters of P. alba var. pyramidalis under the infection of V. sordida

    • 结果显示,环割对照(Ctrl)不改变根部组织中非结构性碳水化合物(NSC)含量(ANOVA,P > 0.05)。与环割对照相比,烂皮病菌侵染(VSo)显著降低根部组织中可溶性糖(20~30 dpi)和淀粉含量(10~30 dpi)(ANOVA,P < 0.05)(图4AB)。另外,值得注意的是,30 dpi时,Ctrl和未环割对照(UC)植株的根部组织中可溶性糖含量显著高于10、20 dpi,同时20、30 dpi时根部组织淀粉显著高于10 dpi(ANOVA,P < 0.05),显示Ctrl和UC植株根部组织的NSC逐渐积累。然而,烂皮病菌处理下,根部组织可溶性糖和淀粉含量在实验期间无显著增加(ANOVA,P > 0.05)且NSC含量显著低于环割对照Ctrl(P < 0.05,图4C),因此,本研究结果显示,烂皮病菌侵染导致根部NSC含量始终维持在10 dpi时的水平。

      图  4  烂皮病菌侵染下新疆杨根部非结构性碳水化合物含量

      Figure 4.  Non-structural carbohydrate content in roots of P. alba var. pyramidalis seedlings under the infection of V. sordida

    • 结果显示,除10 dpi时的蒸腾速率外,环割对照(Ctrl)和未环割对照组(UC)的蒸腾速率(Tr)、水汽压亏缺(VPD)以及水分利用效率(WUE)、叶片水势(Ψmd)无显著差异(ANOVA,P > 0.05)(图5)。然而,与Ctrl相比,烂皮病菌侵染(VSo)导致新疆杨叶片的TrWUE显著降低,VPD显著升高(ANOVA,P < 0.05)。接种后10、30 d,烂皮病菌处理与Ctrl及UC对照植株水势相同,并且20 dpi时新疆杨叶片Ψmd显著高于Ctrl(ANOVA,P < 0.05)。该结果说明烂皮病菌侵染不仅未造成新疆杨叶片水分状况的恶化,甚至对水分状况有一定改善。

      图  5  烂皮病菌侵染下新疆杨叶片蒸腾速率、水分利用效率、水汽压亏缺及叶片正午水势

      Figure 5.  Transpiration rate, water use efficiency, vapor pressure deficit and leaf water potential of P. alba var. pyramidalis leaves under the infection of V. sordida

    • 相关性分析显示,气孔导度(Gs)与蒸腾速率(Tr)呈正相关(R2 = 0.94,P < 0.001)(图6A),而Tr与水汽压亏缺(VPD)呈负相关(R2 = 0.78,P < 0.001)(图6B)。叶片正午水势(Ψmd)与Gs以及VPD均无线性关系(图6CD),说明烂皮病菌侵染引起的气孔关闭与叶部水分状况无关。净光合速率与Fv/FmΦPSII以及ETR均呈正相关(图7),说明病菌侵染造成净光合速率降低的同时,也影响叶片的光合特性。

      图  6  烂皮病菌侵染下新疆杨各生理指标的相关性分析

      Figure 6.  Correlation analysis of physiological indexes of P. alba var. pyramidalis under the infection of V. sordida

      图  7  最大光化学效率、实际光化学效率及电子传递速率与净光合速率的相关性

      Figure 7.  Correlations between the maximum photochemical efficiency, actual photochemical efficiency, electron transport rate and net photosynthetic rate

    • 在生物和非生物胁迫下,植物光合机构往往会受到不同程度的破坏[27-28],而叶绿素荧光参数可以作为快速评价植物叶片光合机构、效率是否受损的指标[29]。有研究证实,病原真菌胁迫下寄主植物叶片的最大光化学效率(Fv/Fm)显著降低(如,Melampsora medusae胁迫下的杨树[9]以及Seiridium. cardinale胁迫下的柏树[30])。本研究显示烂皮病菌侵染期间,新疆杨叶片的Fv/Fm、实际光化学效率(ΦPSII)、电子传递速率(ETR)和光化学猝灭系数(qP)均显著降低(图3),并且相关性分析显示净光合速率与Fv/FmΦPSII以及ETR均呈显著正相关(图7)。由此可以看出,烂皮病菌侵染抑制新疆杨叶片的光能转化效率,导致新疆杨叶片光反应中心部分关闭,阻碍PSII与PSI之间电子传递,使得天线色素捕获的光能用于光化学反应的份额减少,降低光合反应中心活性,从而导致光合速率降低。

      最大净光合速率(Pnmax)取决于光合机构关键酶Rubisco活性和电子传递速率[31]。病原菌胁迫不仅导致叶片光合机构受损,抑制光合电子传递,也影响寄主叶片对光能的利用能力。本研究中,在烂皮病菌侵染植株Pnmax显著降低的同时(表1),ETR也显著降低,然而Pnmax降低与Rubisco酶活性变化是否有关还需更深入的研究。另外,胁迫条件下新疆杨叶片暗呼吸速率(Rd)及光补偿点(LCP)显著升高,而表观量子效率(AQY)却显著降低(表1),表明烂皮病菌侵染增强了新疆杨植株光合产物的消耗,降低了叶片对弱光的吸收和利用能力,并最终导致叶片光合能力下降。

      非结构性碳水化合物(NSC)是植物体内光合产物的主要储存形式。在生长季,光合产物在叶部产生并分配至各个器官,其浓度可以反映植物自身的碳收支状况[32-33]。本研究结果显示在接种后30天内,环割对照(Ctrl)、未环割对照(UC)植株的根部可溶性糖、淀粉含量均呈持续增长的趋势(图4),显示未胁迫植株根部非结构性碳水化合物持续积累的特征。然而,烂皮病菌侵染下,杨树根部可溶性糖及淀粉含量始终维持在10 dpi的水平。田间观察及本研究组研究显示,随着烂皮病菌侵染时间的延长以及侵染程度的加剧,烂皮病菌侵染40~50天,杨树接种部位上部出现枯萎、枝枯等症状[15],这必将造成光合作用的下降甚至停止并进而造成根部碳积累的减少。因此,本研究结果显示,从接种后20甚至10天起,烂皮病菌已经显著抑制杨树根部非结构性碳水化合物的积累。

    • 水分吸收与蒸腾散失之间的平衡是植物正常生长发育的必要条件,病原菌侵染可以造成植物水分代谢紊乱。溃疡类病害作为典型的枝干病害,在病斑扩展的过程中会直接破坏植物的维管组织,或形成侵填体阻碍植物的体内水分运输[16],进而引起植物叶片水势和气孔导度的改变[14]。一般认为,水分相关病害,干旱高温下病害易于发生或发病严重[34-35]。Rohrs-Richey等人在桤木与Valsa melanodiscus互作研究中发现,桤木利用气孔调节提高了叶片水分利用效率[12],杨树溃疡病菌侵染也会显著升高寄主的水分利用效率(WUE)、降低蒸腾速率(Tr[26]。我们近期的研究发现,溃疡病菌侵染早期通过抑制碳代谢途径诱导碳饥饿[26];并且显著降低枝干非结构性碳水化合物含量,但不改变水分状况[15],说明溃疡类病害造成的树木衰亡与水力学失败无关。本研究中,虽然烂皮病菌侵染下新疆杨叶片的TrWUE降低,水汽压亏缺(VPD)升高,但10 dpi和30 dpi时,新疆杨叶片的正午水势(Ψmd)并未降低,反而在胁迫20 dpi时显著升高。该结果说明烂皮病菌侵染不仅未造成新疆杨叶片水分状况的恶化,甚至对水分状况有一定改善作用。以上研究显示,至少在早中期,溃疡、烂皮病菌侵染并不会造成水分胁迫,进一步证实了水力学途径不是病菌侵染下树木衰亡的主要原因。该现象的产生可能与较低的气孔导度和光合速率有关,病菌侵染使气孔导度和光合速率降低,进一步减少植物叶片蒸腾耗水。即使在病菌侵染下,杨树水分代谢与碳代谢之间也能保持相对的平衡。

    • 通过对烂皮病菌(V. sordida)与新疆杨的互作研究发现,烂皮病菌侵染导致新疆杨叶片光能转化、光合电子传递及光能利用受阻,从而降低净光合速率。与此同时,尽管烂皮病菌侵染显著升高新疆杨叶片的水汽压亏缺,降低蒸腾速率和水分利用效率,但较高的叶片水势说明烂皮病菌侵染并未造成新疆杨叶部水分胁迫,甚至有一定的改善作用。另外,烂皮病菌侵染抑制寄主植株根部非结构性碳水化合物的积累,使其含量维持在胁迫初期的水平。由此说明,烂皮病菌侵染早中期造成树木碳代谢失衡,引发碳饥饿,进而导致树木衰亡。

参考文献 (35)

目录

    /

    返回文章
    返回