• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砧木及抗性马尾松松脂组分对松材线虫的响应

李文华 刘青华 周志春 高凯 骆定会

引用本文:
Citation:

砧木及抗性马尾松松脂组分对松材线虫的响应

    通讯作者: 刘青华, liuqinghua642@163.com
  • 中图分类号: S763.1

Response of Different Rootstocks and Resistant Resin Components of Pinus massoniana to Pine Wood Nematode

    Corresponding author: LIU Qing-hua, liuqinghua642@163.com ;
  • CLC number: S763.1

  • 摘要: 目的 通过对马尾松接种松材线虫,分析接种前后松脂化学组分的变化,为马尾松抗松材线虫病的研究提供理论基础。 方法 以浙江省临海市5年生马尾松无性系为研究对象,提取接种前和接种松材线虫1、7、15 d的不同砧木(马尾松砧木和湿地松砧木)、不同抗性(高抗和易感)马尾松的松脂组分,分析各松脂组分含量及动态变化;利用松脂内所得有效萜类对松材线虫实施外源处理,测定松材线虫存活率。 结果 从不同砧木(马尾松砧木和湿地松砧木)、不同抗性(高抗和易感)马尾松中检出19种主要化学组分,其中,α-蒎烯、β-蒎烯、水芹烯、海松酸、山达海松酸、长叶松酸/左旋海松酸、去氢枞酸、枞酸和新枞酸含量较高。接种松材线虫1 d时马尾松砧木中β-月桂烯含量显著高于湿地松砧木(p<0.05);接种松材线虫7 d与15 d时上述组分含量在不同砧木间无显著差异。不同抗性马尾松中α-蒎烯、β-蒎烯、β-月桂烯、柠檬烯、龙脑、长叶烯、α-石竹烯、反式-β-金合欢烯和新枞酸含量在接种松材线虫后变化规律不同,接种松材线虫1 d时高抗马尾松中α-蒎烯和β-蒎烯含量显著高于易感马尾松;接种松材线虫7 d时高抗马尾松中α-蒎烯、β-蒎烯、柠檬烯和长叶烯含量显著高于易感马尾松(p<0.05);接种松材线虫15 d时高抗马尾松中α-蒎烯、β-蒎烯、柠檬烯和长叶烯含量显著高于易感马尾松(p<0.05)。对上述萜类组分进行梯度浓度松材线虫外源试验:以150 mg·g−1浓度α-蒎烯溶液处理0.5 h时,松材线虫存活率达20%;不同浓度β-蒎烯溶液对松材线虫抑制作用相同,1.20 mg·g−1浓度处理0.5 h时松材线虫存活率达50%左右;以10 mg·g−1浓度柠檬烯溶液处理0.5 h时,松材线虫存活率趋于零;以10 mg·g−1浓度长叶烯溶液处理0.5 h时,松材线虫存活率达18%。 结论 不同砧木对马尾松抗性无明显作用;接种松材线虫后,α-蒎烯、β-蒎烯、柠檬烯和长叶烯含量存在显著差异,且均为高抗马尾松显著高于易感马尾松。α-蒎烯、β-蒎烯、柠檬烯和长叶烯低浓度下抑制松材线虫活性,与马尾松抗性有关。
  • 图 1  松材线虫接种

    Figure 1.  Inoculate pine wood nematode

    图 2  接种松材线虫后不同砧木及不同抗性马尾松显症

    Figure 2.  P. massoniana with different rootstocks and different resistance after inoculation with pine wood nematode

    图 3  马尾松1样品的化合物色谱峰值图

    Figure 3.  Chromatogram of a P. massoniana sample

    图 4  不同砧木马尾松不同接种时间松脂中的萜类组分及含量

    Figure 4.  Terpenoid components and contents in pine oleoresin of P. massoniana with different rootstock at different inoculation times

    图 5  不同砧木马尾松接种松材线虫1, 7和15 d后萜类含量差异分析

    Figure 5.  Analysis on the difference of terpenoid content of P. massoniana with different stock after inoculation with pine wood nematode for 1, 7 and 15 days

    图 6  高抗与易感马尾松不同接种时间松脂中的萜类组分及含量

    Figure 6.  Terpenoid components and contents in pine oleoresin of resistant and susceptible P. massoniana at different inoculation days.

    图 7  不同抗性马尾松接种松材线虫1, 7和15 d后萜类含量差异分析

    Figure 7.  Analysis on the difference of terpenoid content of P. massoniana with different resistance after inoculation with pine wood nematode for 1, 7 and 15 days.

    图 8  松脂组分体外作用松材线虫致死率

    Figure 8.  Inhibitory effect of resin composition on mean fatality rate of PWN in vitro.

    表 1  不同砧木马尾松接种松材线虫松脂组分方差分析

    Table 1.  Variance analysis of oleoresin components of P. massoniana inoculated with pine wood nematode on different rootstocks

    松脂组分
    Rosin components
    平均值±标准差 Mean±SD/mg·g−1 变异系数 CV/%p
    马尾松砧木
    Rootstock of
    P. massoniana
    湿地松砧木
    Rootstock of
    P. elliottii
    马尾松砧木
    Rootstock of
    P. massoniana
    湿地松砧木
    Rootstock of
    P. elliottii
    α-蒎烯 α-pinene 85.02±10.81 91.84±15.49 12.71 16.87 0.04*
    β-蒎烯 β-pinene 18.15±11.21 18.22±9.68 61.74 53.16 0.99
    β-月桂烯 β-laurene 1.60±1.77 0.62±1.16 110.92 185.68 0.12
    柠檬烯 Limonene 2.56±3.46 3.18±4.19 135.15 131.84 0.70
    水芹烯 Phellandrene 61.67±18.41 64.05±21.60 29.85 33.72 0.77
    龙脑 Borneol 13.17±9.38 12.53±8.92 71.22 71.19 0.87
    长叶蒎烯 Longipinene 6.62±2.86 7.47±2.06 43.16 27.84 0.41
    环长叶烯 Longicyclene 14.17±3.87 12.42±3.70 27.33 27.61 0.27
    洒剔烯 Sativene 22.98±19.06 19.04±10.70 82.92 56.16 0.54
    长叶烯 Longifolene 17.23±1.75 13.76±1.60 10.15 11.63 0.00**
    石竹烯 Caryophyllene 4.54±2.75 8.41±2.88 60.65 34.19 0.00**
    α-石竹烯 α-caryophyllene 3.69±3.98 0.78±1.89 108.03 241.43 0.03*
    反式-β-金合欢烯
    Trans-β-farnesene
    22.08±15.70 60.75±25.19 71.12 41.46 0.00**
    海松酸 Pimaric acid 34.19±9.74 43.82±15.18 28.50 34.65 0.09
    山达海松酸 Sandaracopimaric acid 30.44±3.37 28.22±3.09 11.07 10.83 0.11
    左旋海松酸/长叶松酸 Palustric acid/levopimaric acid 401.70±39.08 373.91±26.62 9.73 7.12 0.05
    去氢枞酸 Dehydroabietic 50.82±23.38 75.69±15.63 46.00 20.65 0.01**
    枞酸 Abietic acid 159.91±52.52 114.42±25.16 32.85 21.99 0.01*
    新枞酸 Neoabietic acid 30.57±9.65 29.18±6.70 31.56 22.96 0.69
    单萜类 Monoterpenes 179.17±8.34 196.44±15.56 4.65 7.92 0.00**
    倍半萜类 Sesquiterpenes 97.84±40.02 122.64±36.99 40.90 30.16 0.13
    二萜类 Diterpenes 704.78±52.28 685.24±38.67 7.42 5.64 0.05*
    注:*表示相关性在p<0.05水平上显著,**表示在p<0.01水平上显著。下同
      Notes: “*” indicates that the correlation is significant at the p<0.05 level, “**” indicates that the correlation is significant at the p<0.01 level. The same below
    下载: 导出CSV

    表 2  不同抗性马尾松接种松材线虫松脂组分方差分析

    Table 2.  Variance analysis of oleoresin components of P. massoniana inoculated with pine wood nematode with different resistance

    松脂组分   
    Rosin components   
    平均值/标准差
    Mean±SD/mg·g−1
    变异系数
    CV/%
    p
    高抗马尾松
    Resistant
    P. massoniana
    易感马尾松
    Susceptible
    P. massoniana
    高抗马尾松
    Resistant
    P. massoniana
    易感马尾松
    Susceptible
    P. massoniana
    α-蒎烯 α-pinene 85.10±4.04 77.87±3.65 4.75 4.68 0.01*
    β-蒎烯 β-pinene 17.69±2.45 12.31±0.92 13.87 7.50 0.00**
    β-月桂烯 β-laurene 1.42±1.58 1.97±2.33 111.6 118.66 0.04*
    柠檬烯 Limonene 3.08±0.55 2.21±0.28 17.95 12.48 0.02*
    水芹烯 Phellandrene 60.08±7.80 60.86±3.22 12.98 5.28 0.85
    龙脑 Borneol 13.34±0.14 13.12±0.10 1.04 0.80 0.02*
    长叶蒎烯 Longipinene 6.79±3.04 6.29±2.87 44.7 45.62 0.79
    环长叶烯 Longicyclene 14.09±4.23 14.33±3.64 30.01 25.38 0.93
    洒剔烯 Sativene 22.80±8.68 20.73±10.78 38.08 51.97 0.73
    长叶烯 Longifolene 16.86±0.23 16.12±0.22 1.38 1.35 0.00**
    石竹烯 Caryophyllene 4.77±1.32 4.93±1.12 27.67 22.69 0.85
    α-石竹烯 α-caryophyllene 4.24±0.98 4.23±1.67 23.07 39.43 0.99
    反式-β-金合欢烯 Trans-β-farnesene 22.78±13.87 21.17±14.03 60.86 66.26 0.85
    海松酸 Pimaric acid 31.97±4.08 33.71±2.33 12.76 6.91 0.45
    山达海松酸 Sandaracopimaric acid 29.55±2.31 32.23±4.77 7.80 14.81 0.21
    左旋海松酸/长叶松酸 Palustric acid/levopimaric acid 400.89±42.67 403.31±36.70 10.64 9.10 0.93
    去氢枞酸 Dehydroabietic 42.34±2.34 41.58±2.01 5.52 4.83 0.59
    枞酸 Abietic acid 160.57±64.52 158.59±20.00 40.18 12.61 0.95
    新枞酸 Neoabietic acid 28.64±4.53 28.86±3.25 15.83 11.25 0.93
    单萜类 Monoterpenes 180.69±6.87 168.34±3.69 3.80 2.19 0.01**
    倍半萜类 Sesquiterpenes 92.35±26.79 87.80±25.77 29.01 29.35 0.79
    二萜类 Diterpenes 693.96±73.33 698.30±54.75 10.57 7.84 0.92
    下载: 导出CSV
  • [1] 刘 彬, 刘青华, 周志春, 等. 马尾松β-蒎烯合酶基因克隆以及对松材线虫侵染的响应[J]. 林业科学研究, 2020, 33(6):1-12. doi: 10.13275/j.cnki.lykxyj.2020.06.001

    [2] 魏永成, 刘青华, 周志春, 等. 不同产脂量马尾松无性系木质部树脂道结构差异[J]. 林业科学, 2016, 52(7):8.

    [3] 尹焕焕, 刘青华, 周志春, 等. 马尾松产脂性状与生长性状的无性系变异及相关性[J]. 林业科学, 2018, 54(12):10.

    [4]

    TRAPP S, CROTEAU R. Defensive resin biosynthesis in conifers[J]. Annual Review of Plant Biology, 2001, 52(1): 689-724. doi: 10.1146/annurev.arplant.52.1.689
    [5]

    MARTIN D, BOHLMANN J. Chapter Two Molecular biochemistry and genomics of terpenoid defenses in conifers[J]. Recent Advances in Phytochemistry, 2005, 39(5): 29-56.
    [6]

    MILLER B, MADILAO L L, RALPH S, et al. Insect-induced conifer defense: White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce[J]. Plant Physiology, 2005, 137(1): 369-382. doi: 10.1104/pp.104.050187
    [7]

    STROM B L, GOYER R A, INGRAM L L. Oleoresin characteristics of progeny of loblolly pines that escaped attack by the southern pine beetle[J]. For Ecol Manage, 2002, 158(1): 169-178.
    [8]

    KELKAR V M, GEILS B W, BECKER D R, et al. How to recover more value from small pine trees: Essential oils and resins[J]. Biomass and Bioenergy, 2006, 30(4): 316-320. doi: 10.1016/j.biombioe.2005.07.009
    [9] 朱福鸿. α-蒎烯抑制HepG2细胞增殖及相关机制研究[D]. 广东: 广东药学院, 2015.

    [10]

    BOLLA R I, JORDAN W. Cultivation of the pine wilt nematode, Bursaphelenchus xylophilus, in axenic culture media. [J] Journal of Nematology, 1982, 14(3): 377-381.
    [11] 张华锋, 陈思宇, 刘 刚, 等. 松材线虫病疫木卫生伐对马尾松纯林林分结构的影响[J]. 浙江农林大学学报, 2020, 37(4):7. doi: 10.11833/j.issn.2095-0756.20190487

    [12]

    BOHLMANN J. Pine terpenoid defences in the mountain pine beetle epidemic and in other conifer pest interactions: specialized enemies are eating holes into a diverse, dynamic and durable defence system[J]. Tree Physiology, 2012, 32(8): 943-945. doi: 10.1093/treephys/tps065
    [13]

    KARANIKAS C, WALLKER V, SCALTSOYIANNES A, et al. High vs. low yielding oleoresin Pinus halepensis Mill. trees GC terpenoids profiling as diagnostic tool[J]. Ann For Sci, 2010, 67(412): 1-8.
    [14]

    CASSELLA S, JOHN P C, SMITH I. Synergistic antifungal activity of tea tree ( Melaleuca alternifolia ) and lavender ( Lavandula angustifolia ) essential oils against dermatophyte infection[J]. International Journal of Aromatherapy, 2002, 12(1): 2-15. doi: 10.1054/ijar.2001.0127
    [15] 占爱瑶, 由香玲, 詹亚光. 植物萜类化合物的生物合成及应用[J]. 生物技术通讯, 2010(1):5. doi: 10.3969/j.issn.1009-0002.2010.01.032

    [16] 王 璇. 松材线虫CYP450基因与松树蒎烯类物质代谢的相关性[J]. 林业科学, 2017, 53(6):6.

    [17] 文福姬, 俞庆善. 植物性天然香料的研究进展[J]. 现代化工, 2005, 25(4):4. doi: 10.16606/j.cnki.issn0253-4320.2005.04.007

    [18] 杨宝君, 潘宏阳, 汤坚, 等. 松材线虫病[M]. 北京: 中国林业出版社, 2003.

    [19] 陈根林. 松树化学分类与松材线虫病抗性研究[J]. 安徽林业科技, 2021, 47(5):4.

    [20] 解 斌, 安秀红, 陈艳辉, 等. 苹果砧木对低氮胁迫的响应及适应性评价[J]. 植物营养与肥料学报, 2022, 28(6):12.

    [21] 丁祥, 钟海霞, 王西平, 等. 新疆葡萄砧木叶片解剖结构观察及抗旱性评价[J/OL]. 分子植物育种, 2023, 1-18.

    [22] 罗柠. 临海市森林城市建设规划研究[D]. 浙江: 浙江大学, 2013. .

    [23] 丁泉. 临海市土地利用结构分析及其演化趋势研究[D]. 浙江: 浙江大学, 2009.

    [24] 刘 彬, 刘青华, 周志春, 等. 基于高通量转录组测序筛选马尾松抗松材线虫病相关基因[J]. 林业科学研究, 2019, 32(5):1-10. doi: 10.13275/j.cnki.lykxyj.2019.05.001

    [25] 徐六一, 章 健, 高景斌, 等. 安徽省松材线虫病抗性育种研究进展[J]. 安徽林业科技, 2013, 39(2):8-10. doi: 10.3969/j.issn.2095-0152.2013.02.002

    [26]

    LIU Q H, WEI Y C, XU L Y, et al. Transcriptomic profiling reveals differentially expressed genes associated with pine wood nematode resistance in Masson Pine (Pinus massoniana Lamb. )[J]. Scientific Reports, 2017, 7(1): 4693. doi: 10.1038/s41598-017-04944-7
    [27] 古 研, 赵振东, 毕良武, 等. 马尾松松节油标准样品的定值研究[J]. 生物质化学工程, 2011, 45(1):4.

    [28] 王振洪, 商士斌, 宋湛谦, 等. 气相色谱用马尾松松香标准样品的研制[J]. 生物质化学工程, 2007, 41(6):1-5.

    [29] 叶建仁. 松材线虫病在中国的流行现状, 防治技术与对策分析[J]. 林业科学, 2019, 55(9):1-10.

    [30] 魏永成. 接种松材线虫后抗性马尾松的防御物质变化及转录组分析[D]. 北京: 中国林业科学研究院, 2016.

    [31]

    ZHAO L L, WEI W, KANG L, et al. Chemotaxis of the pinewood nematode, Bursaphelenchus xylophilus, to volatiles associated with host pine, Pinus massoniana, and its vector Monochamus alternatus[J]. Journal of Chemical Ecology, 2007, 33(6): 1207-1216. doi: 10.1007/s10886-007-9289-y
    [32]

    KURODA K. Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus)[J]. Annals of the Phytopathological Society of Japan, 1989, 55(2): 170-178. doi: 10.3186/jjphytopath.55.170
    [33]

    LIU B, LIU Q H, ZHOU Z C, et al. Two terpene synthases in resistant Pinus massoniana contribute to defense against Bursaphelenchus xylophilus[J]. Plant Cell and Environment, 2021, 44(1): 257-274. doi: 10.1111/pce.13873
    [34]

    NIU H T, ZHAO L L, LU M, et al. The ratio and concentration of two monoterpenes mediate fecundity of the pinewood nematode and growth of its associated fungi[J]. PLoS One, 2012, 7(2): e31716. doi: 10.1371/journal.pone.0031716
  • [1] 岳水林荣文琛 . 马尾松种源松脂组分的地理变异*. 林业科学研究, 1994, 7(4): 431-436.
    [2] 杨宝君胡凯基王秋丽孙玉林吴政民汪企明 . 松树对松材线虫抗性的研究*. 林业科学研究, 1993, 6(3): 249-255.
    [3] 徐福元葛明宏朱正昌朱克恭 . 南京地区不同松种和马尾松种源对松材线虫病的抗性及病害流行规律. 林业科学研究, 1996, 9(5): 521-524.
    [4] 刘彬刘青华周志春徐六一陈雪莲罗柠 . 基于高通量转录组测序筛选马尾松抗松材线虫病相关基因. 林业科学研究, 2019, 32(5): 1-10. doi: 10.13275/j.cnki.lykxyj.2019.05.001
    [5] 徐亮刘振宇吕全梁军张星耀 . 马尾松钙调素基因的克隆及响应松材线虫侵染的表达特征. 林业科学研究, 2014, 27(3): 323-328.
    [6] 温晓健巫建军李永先王璇理永霞张星耀 . 松材线虫侵染前后马尾松树体内微生物多样性分析. 林业科学研究, 2022, 35(1): 48-58. doi: 10.13275/j.cnki.lykxyj.2022.01.006
    [7] 谢婉凤梁光红 . 松材线虫侵染下马尾松针叶miRNA和mRNA的关联表达. 林业科学研究, 2018, 31(6): 7-14. doi: 10.13275/j.cnki.lykxyj.2018.06.002
    [8] 郝德君谈家金陈凤毛杨剑霞戴华国 . 黑松和马尾松苗受松材线虫侵染后部分化学物质的响应. 林业科学研究, 2012, 25(2): 218-222.
    [9] 宋学雨简尊吉王少博党英侨魏可王小艺肖文发 . 松材线虫入侵对湖北三峡地区马尾松林水源涵养能力的影响. 林业科学研究, 2024, 37(1): 10-20. doi: 10.12403/j.1001-1498.20230113
    [10] 董虹妤刘青华周志春金国庆沈丹玉宋新回 . 马尾松3代杂交子代幼林松脂化学组分的GCA/SCA分析. 林业科学研究, 2016, 29(5): 654-661.
    [11] 胡凯基杨宝君 . 松材线虫和拟松材线虫不同株系酶电泳的研究*. 林业科学研究, 1995, 8(1): 73-77.
    [12] 朱正昌周性恒李庆波高景斌朱洪兵戢振华 . 涕灭威抑制松材线虫繁殖的研究. 林业科学研究, 1990, 3(3): 229-235.
    [13] 严东辉杨宝君 . 松材线虫体外酶组成分析. 林业科学研究, 1997, 10(3): 265-269.
    [14] 范立淳时勇姜生伟郑雅楠 . 辽宁携带松材线虫的天牛种类研究. 林业科学研究, 2021, 34(6): 174-181. doi: 10.13275/j.cnki.lykxyj.2021.06.021
    [15] . 松材线虫与拟松材线虫分泌的纤维素酶系研究. 林业科学研究, 2009, 22(3): -.
    [16] 刘伟杨宝君 . 松材线虫和拟松材线虫雄虫交合伞形状的比较*. 林业科学研究, 1995, 8(2): 223-225.
    [17] 胡凯基王秋丽杨宝君 . 松材线虫和拟松材线虫不同株系致病性的研究*. 林业科学研究, 1994, 7(4): 380-385.
    [18] 刘伟杨宝君 . 松材线虫和拟松材线虫的杂交遗传差异研究*. 林业科学研究, 1994, 7(5): 469-473.
    [19] 赵锦年张常青戴建昌蒋平孙胜利周关校 . 松墨天牛成虫羽化逸出及其携带松材线虫能力的研究. 林业科学研究, 1999, 12(6): 572-576.
    [20] 杨宝君汪来发赵文霞徐福元张培李占鹏 . 松材线虫病的潜伏侵染及松墨天牛传播新途径. 林业科学研究, 2002, 15(3): 251-255.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  3315
  • HTML全文浏览量:  1045
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 录用日期:  2022-12-28
  • 网络出版日期:  2023-08-03
  • 刊出日期:  2023-08-20

砧木及抗性马尾松松脂组分对松材线虫的响应

    通讯作者: 刘青华, liuqinghua642@163.com
  • 1. 中国林业科学研究院亚热带林业研究所,浙江 杭州 311400
  • 2. 南京林业大学,江苏 南京 210037
  • 3. 台州森伟林业调查规划设计有限公司,浙江 临海 317000

摘要:  目的 通过对马尾松接种松材线虫,分析接种前后松脂化学组分的变化,为马尾松抗松材线虫病的研究提供理论基础。 方法 以浙江省临海市5年生马尾松无性系为研究对象,提取接种前和接种松材线虫1、7、15 d的不同砧木(马尾松砧木和湿地松砧木)、不同抗性(高抗和易感)马尾松的松脂组分,分析各松脂组分含量及动态变化;利用松脂内所得有效萜类对松材线虫实施外源处理,测定松材线虫存活率。 结果 从不同砧木(马尾松砧木和湿地松砧木)、不同抗性(高抗和易感)马尾松中检出19种主要化学组分,其中,α-蒎烯、β-蒎烯、水芹烯、海松酸、山达海松酸、长叶松酸/左旋海松酸、去氢枞酸、枞酸和新枞酸含量较高。接种松材线虫1 d时马尾松砧木中β-月桂烯含量显著高于湿地松砧木(p<0.05);接种松材线虫7 d与15 d时上述组分含量在不同砧木间无显著差异。不同抗性马尾松中α-蒎烯、β-蒎烯、β-月桂烯、柠檬烯、龙脑、长叶烯、α-石竹烯、反式-β-金合欢烯和新枞酸含量在接种松材线虫后变化规律不同,接种松材线虫1 d时高抗马尾松中α-蒎烯和β-蒎烯含量显著高于易感马尾松;接种松材线虫7 d时高抗马尾松中α-蒎烯、β-蒎烯、柠檬烯和长叶烯含量显著高于易感马尾松(p<0.05);接种松材线虫15 d时高抗马尾松中α-蒎烯、β-蒎烯、柠檬烯和长叶烯含量显著高于易感马尾松(p<0.05)。对上述萜类组分进行梯度浓度松材线虫外源试验:以150 mg·g−1浓度α-蒎烯溶液处理0.5 h时,松材线虫存活率达20%;不同浓度β-蒎烯溶液对松材线虫抑制作用相同,1.20 mg·g−1浓度处理0.5 h时松材线虫存活率达50%左右;以10 mg·g−1浓度柠檬烯溶液处理0.5 h时,松材线虫存活率趋于零;以10 mg·g−1浓度长叶烯溶液处理0.5 h时,松材线虫存活率达18%。 结论 不同砧木对马尾松抗性无明显作用;接种松材线虫后,α-蒎烯、β-蒎烯、柠檬烯和长叶烯含量存在显著差异,且均为高抗马尾松显著高于易感马尾松。α-蒎烯、β-蒎烯、柠檬烯和长叶烯低浓度下抑制松材线虫活性,与马尾松抗性有关。

English Abstract

  • 马尾松(Pinus massoniana Lamb.)广泛分布于我国亚热带地区,适应性强,在土层深厚的土壤中生长较快[1],是我国主要的产脂、用材和荒山造林先锋树种[2]。其松脂是由分泌细胞分泌的无色透明次生代谢产物,可以分离成松节油和松香[3],主要由萜类物质组成[4],贮藏于松树的针叶、枝和茎的木质部和韧皮部的树脂道系统中,在针叶树种的防御体系中有着重要的作用[5-7]。此外,松脂广泛应用于香料、医药、机械、造纸、油墨等行业[8],也是我国重要的工业原料及可再生环保资源[9]

    松材线虫病被称为松树的“癌症”[10],最快两个月内可导致感染植株死亡。马尾松常易感染松材线虫病,但有些松树(如湿地松、火炬松)却明显具有抗病性。据国家林业和草原局统计,近30年来,全国因松材线虫病损失的松树累计可达数十亿株,造成直接经济损失和生态服务价值损失高达上千亿元,松材线虫病已成为全球森林生态系统中最具危险性、毁灭性的病害之一[11]

    松属植物在遭受生物或非生物刺激时,能够经树脂道分泌化学防御物质松脂进行自我保护[12];受到创伤时,其分泌的松脂将伤口封闭,并为入侵生物制造有毒的环境[13]。已有相关研究表明,松脂的各类组分功能不同,萜类化合物可以抑制细菌、真菌和病毒感染[1, 14-15],蒎烯类是松树防御反应的重要化合物[16],单萜类化合物具有良好的杀虫效果[17];倍半萜类与松材线虫病抗性也有紧密联系[18-19]

    嫁接技术可能对提高植物抗逆境能力和对病虫害抵抗能力有一定程度改善。不同苹果砧木影响植物在胁迫环境下生长受抑制情况,耐性强的砧木可通过调节自身生理特征以适应胁迫环境[20];新疆葡萄不同砧木间也存在抗旱能力差异[21]。本文通过分析不同砧木及不同抗性马尾松接种松材线虫后各松脂组分动态变化,揭示砧木对马尾松抗松材线虫病影响及马尾松对松材线虫病害的响应机制,进一步为防治马尾松松材线虫病提供科学依据。

    • 马尾松试验林设在浙江省临海市林业技术推广和场圃旅游服务总站(28°88′ N,121°01′ E),属亚热带季风气候,四季分明,雨量充沛,温暖湿润,年平均气温17.30 ℃,全年无霜期242 d,年平均降水量1 638.10 mm,年平均日照时数1 936.40 h[22],土壤类型为红壤[23]。试验材料取自5年生马尾松嫁接苗测定林,包括共有16个无性系,马尾松砧木为浙江马尾松一代良种‘5410’种子园混合种子,依据前期对砧木接种松材线虫,砧木全部死亡;湿地松砧木为G-222优良种子,对砧木接种松材线虫,致死率为30%。两种砧木所用马尾松穗条均为休宁5(4级)。根据前期安徽省林业科学研究院对马尾松无性系对松材线虫病的抗性指数测定,划分为1~4级,其中1级为易感,4级为高抗[24]。于2018年选择高抗无性系休宁5(4级)和易感无性系黄山1(1级)各10株,在试验前未采过松脂;供试松材线虫材料为高致病性、高繁殖性线虫株系‘广株3B’,此种松材线虫分离种群多次继代培养的松材线虫繁殖速度比初代培养的要慢5~6代,繁殖能力下降[25]。试验所用线虫为从当年新枝中分离出来,并经鉴定为‘广德3B’,于灰葡萄孢菌落上纯培养,保存于4 ℃冰箱中备用。

    • 将灰葡萄孢接种在马铃薯葡萄糖琼脂(PDA)培养基上,于28 ℃霉菌培养箱恒温培养5 d。待着色菌落生长到培养皿上盖后,将所选高致病性松材线虫材料接种到灰葡萄孢菌落中,在28 ℃恒温培养约10 d,使菌落完全被松材线虫取食。采用贝尔曼漏斗法将松材线虫分离,12 h后,将其收集在10 mL离心管中,无菌水冲洗3次,并以300 r·min−1离心5 min,以去除上清液。将所得各离心管中的松材线虫汇聚混匀,最后制备成每1 μL含有50条松材线虫的悬浮液。

      于2018年7月对马尾松接种松材线虫(图1)。分别选取10株马尾松砧木马尾松和10株湿地松砧木马尾松、10株高抗马尾松和10株易感马尾松接种松材线虫悬浊液。参考Liu等[26]处理方法进行接种与样品采集。所取样品包括上述40株马尾松,包括接种前、接种后1、7、15和30 d 4个取样时间点,每株马尾松取3个重复。

      图  1  松材线虫接种

      Figure 1.  Inoculate pine wood nematode

    • 每个无性系采用3个重复,从每个试验区系统选择了1~2株生长最佳的健康马尾松植株进行松脂收集测定,在植株胸径处划出一条长约20 cm、宽1~2 mm、深3~4 mm的斜口,采用下降式单刀采脂法收集松脂。将新鲜松脂收集于5 mL聚乙烯管中,在松脂达到管体积的2/3时,立即封闭管口并放入冰盒中,置于−20 ℃冰箱中保存待测。

      利用气相色谱-质谱联用技术(GC/MS)分析和测定松脂各组分含量。样品制备参考Karanikas[13]的方法,使用Agilent 6890N气相色谱和Agilent 5975B质谱联用,检测马尾松的松脂组分含量。获得的片段通过与NTST08谱库(National Institute of Standards and Technology , USA)匹配来进行松脂化学组分的识别,根据各组分与内标的面积确定各组分在松脂中的含量。

    • 以前期所用灰葡萄孢菌落培养的松材线虫,接种于PDA培养基中培养,用贝尔曼漏斗法将分离出的松材线虫装在2 mL离心管中,制成含有500条松材线虫的1 mL悬浊液。将纯度为97%的α-蒎烯标准品、纯度为98%的β-蒎烯标准品、纯度为98%的长叶烯标准品、纯度为97%的柠檬烯标准品、纯度为97%的β-月桂烯标准品及98%的龙脑标准品以一定浓度梯度作用于松材线虫,在25 ℃条件下培养24 h;以Triton X-100为对照,技术重复3次;选取处理后0.5 、6、24 h为时间节点观察线虫致死率。

    • 接种松材线虫后,马尾松砧木和湿地松砧木马尾松均无发病症状(图2d, 2e)。对以马尾松和湿地松为砧木的马尾松松脂进行GC-MS检测,选择与NTST08匹配度高于90%、含量超过0.01%的萜类松脂化学组分(图3),结果表明:两种砧木马尾松均检测出19种松脂组分,其中单萜类6种,倍半萜类7种,二萜类6种(表1)。通过对各松脂组分含量方差分析表明:倍半萜含量在两种砧木马尾松间无显著差异,平均含量约为90.00~130.00 mg·g−1;单萜含量与二萜含量在两种砧木马尾松间存在显著差异,其中湿地松砧木单萜含量较马尾松砧木高9.64%,马尾松砧木二萜含量较湿地松砧木高2.85%。

      图  2  接种松材线虫后不同砧木及不同抗性马尾松显症

      Figure 2.  P. massoniana with different rootstocks and different resistance after inoculation with pine wood nematode

      图  3  马尾松1样品的化合物色谱峰值图

      Figure 3.  Chromatogram of a P. massoniana sample

      表 1  不同砧木马尾松接种松材线虫松脂组分方差分析

      Table 1.  Variance analysis of oleoresin components of P. massoniana inoculated with pine wood nematode on different rootstocks

      松脂组分
      Rosin components
      平均值±标准差 Mean±SD/mg·g−1 变异系数 CV/%p
      马尾松砧木
      Rootstock of
      P. massoniana
      湿地松砧木
      Rootstock of
      P. elliottii
      马尾松砧木
      Rootstock of
      P. massoniana
      湿地松砧木
      Rootstock of
      P. elliottii
      α-蒎烯 α-pinene 85.02±10.81 91.84±15.49 12.71 16.87 0.04*
      β-蒎烯 β-pinene 18.15±11.21 18.22±9.68 61.74 53.16 0.99
      β-月桂烯 β-laurene 1.60±1.77 0.62±1.16 110.92 185.68 0.12
      柠檬烯 Limonene 2.56±3.46 3.18±4.19 135.15 131.84 0.70
      水芹烯 Phellandrene 61.67±18.41 64.05±21.60 29.85 33.72 0.77
      龙脑 Borneol 13.17±9.38 12.53±8.92 71.22 71.19 0.87
      长叶蒎烯 Longipinene 6.62±2.86 7.47±2.06 43.16 27.84 0.41
      环长叶烯 Longicyclene 14.17±3.87 12.42±3.70 27.33 27.61 0.27
      洒剔烯 Sativene 22.98±19.06 19.04±10.70 82.92 56.16 0.54
      长叶烯 Longifolene 17.23±1.75 13.76±1.60 10.15 11.63 0.00**
      石竹烯 Caryophyllene 4.54±2.75 8.41±2.88 60.65 34.19 0.00**
      α-石竹烯 α-caryophyllene 3.69±3.98 0.78±1.89 108.03 241.43 0.03*
      反式-β-金合欢烯
      Trans-β-farnesene
      22.08±15.70 60.75±25.19 71.12 41.46 0.00**
      海松酸 Pimaric acid 34.19±9.74 43.82±15.18 28.50 34.65 0.09
      山达海松酸 Sandaracopimaric acid 30.44±3.37 28.22±3.09 11.07 10.83 0.11
      左旋海松酸/长叶松酸 Palustric acid/levopimaric acid 401.70±39.08 373.91±26.62 9.73 7.12 0.05
      去氢枞酸 Dehydroabietic 50.82±23.38 75.69±15.63 46.00 20.65 0.01**
      枞酸 Abietic acid 159.91±52.52 114.42±25.16 32.85 21.99 0.01*
      新枞酸 Neoabietic acid 30.57±9.65 29.18±6.70 31.56 22.96 0.69
      单萜类 Monoterpenes 179.17±8.34 196.44±15.56 4.65 7.92 0.00**
      倍半萜类 Sesquiterpenes 97.84±40.02 122.64±36.99 40.90 30.16 0.13
      二萜类 Diterpenes 704.78±52.28 685.24±38.67 7.42 5.64 0.05*
      注:*表示相关性在p<0.05水平上显著,**表示在p<0.01水平上显著。下同
        Notes: “*” indicates that the correlation is significant at the p<0.05 level, “**” indicates that the correlation is significant at the p<0.01 level. The same below

      α-蒎烯含量在单萜中最高,在不同砧木马尾松间存在显著差异(p<0.05),且湿地松砧木含量较马尾松砧木高8.02%。长叶烯、石竹烯和枞酸在不同砧木马尾松间具有显著差异(p<0.05),且湿地松砧木石竹烯含量高于马尾松砧木85.24%、马尾松砧木长叶烯含量与枞酸含量分别高于湿地松砧木25.22%与39.76%。α-石竹烯、反式-β-金合欢烯和去氢枞酸含量在不同砧木马尾松间也存在显著差异(p<0.05)。

      β-蒎烯平均含量约为17.10~19.30 mg·g−1、β-月桂烯平均含量约为0.50~1.70 mg·g−1、柠檬烯平均含量约为1.50~4.30 mg·g−1、水芹烯平均含量约为59.00~69.00 mg·g−1、龙脑平均含量约为10.80~19.00 mg·g−1,在两种砧木马尾松间均无显著差异。长叶蒎烯、环长叶烯、洒剔烯、海松酸、山达海松酸、左旋海松酸/长叶松酸和新枞酸含量在两种砧木马尾松间也无显著差异。

    • 两种砧木马尾松接种松材线虫1 d后松脂组分中萜类含量略有增加,但均无显著差异。α-蒎烯、β-蒎烯和龙脑在两种砧木马尾松中含量变化规律相似。对马尾松砧木马尾松接种松材线虫后不同时间松脂化学组分均值分析(图4a),结果表明:β-月桂烯、柠檬烯和新枞酸含量变化规律为先上升后下降,且在7 d最大值15 d最小值;海松酸含量变化规律为上升趋势,且在15 d达最大值;洒剔烯等含量变化无显著差异。对湿地松砧木马尾松接种松材线虫后不同时间松脂化学组分均值分析(图4b),结果显示:海松酸含量变化规律为先上升后下降,且7 d最大值15 d最小值;洒剔烯含量变化规律为逐渐上升,且在15 d最大值。β-蒎烯、柠檬烯和新枞酸等含量变化无显著差异。在两种砧木马尾松接种松材线虫7 d时,新枞酸仅在马尾松砧木中达最大值,而海松酸仅在湿地松砧木中达最大值,且萜类组分含量在两种砧木马尾松间均无显著差异。

      图  4  不同砧木马尾松不同接种时间松脂中的萜类组分及含量

      Figure 4.  Terpenoid components and contents in pine oleoresin of P. massoniana with different rootstock at different inoculation times

      接种松材线虫后α-蒎烯、β-蒎烯、柠檬烯、龙脑、海松酸和新枞酸含量在两种砧木马尾松间无显著差异。β-月桂烯含量在接种松材线虫1 d后马尾松砧木显著高于湿地松砧木(p<0.05)(图5a);β-月桂烯含量在接种松材线虫7 d后马尾松砧木显著高于湿地松砧木(p<0.05)(图5b);在接种松材线虫15 d后各组分含量在马尾松砧木与湿地松砧木间无显著差异(图5c)。

      图  5  不同砧木马尾松接种松材线虫1, 7和15 d后萜类含量差异分析

      Figure 5.  Analysis on the difference of terpenoid content of P. massoniana with different stock after inoculation with pine wood nematode for 1, 7 and 15 days

    • 接种松材线虫后,高抗马尾松无症状出现,易感马尾松在接种后7 d即出现针叶枯黄现象,并在接种后30 d时全部枯死(图2c, 2f)。在组织结构上,易感马尾松组织结构接种松材线虫1 d时有轻微损伤(图2a, 2b)。高抗马尾松和易感马尾松松脂共检测出19种松脂组分,对高抗与易感马尾松松脂进行GC-MS检测,选择与NTST08匹配度高于90%、含量超过0.01%的萜类松脂化学组分,结果表明:高抗与易感马尾松均检测出19种松脂组分,其中单萜类6种,倍半萜类7种,二萜类6种(表2)。其中,高抗与易感马尾松松脂组分仅在含量上有差异,方差分析表明:高抗与易感马尾松倍半萜和二萜含量之间无显著差异,在松脂中平均含量分别约为80.00~100.00 mg·g−1和680.00~710.00 mg·g−1。而在单萜含量中存在显著差异,其中高抗马尾松单萜含量比易感马尾松单萜含量高7.34%。

      表 2  不同抗性马尾松接种松材线虫松脂组分方差分析

      Table 2.  Variance analysis of oleoresin components of P. massoniana inoculated with pine wood nematode with different resistance

      松脂组分   
      Rosin components   
      平均值/标准差
      Mean±SD/mg·g−1
      变异系数
      CV/%
      p
      高抗马尾松
      Resistant
      P. massoniana
      易感马尾松
      Susceptible
      P. massoniana
      高抗马尾松
      Resistant
      P. massoniana
      易感马尾松
      Susceptible
      P. massoniana
      α-蒎烯 α-pinene 85.10±4.04 77.87±3.65 4.75 4.68 0.01*
      β-蒎烯 β-pinene 17.69±2.45 12.31±0.92 13.87 7.50 0.00**
      β-月桂烯 β-laurene 1.42±1.58 1.97±2.33 111.6 118.66 0.04*
      柠檬烯 Limonene 3.08±0.55 2.21±0.28 17.95 12.48 0.02*
      水芹烯 Phellandrene 60.08±7.80 60.86±3.22 12.98 5.28 0.85
      龙脑 Borneol 13.34±0.14 13.12±0.10 1.04 0.80 0.02*
      长叶蒎烯 Longipinene 6.79±3.04 6.29±2.87 44.7 45.62 0.79
      环长叶烯 Longicyclene 14.09±4.23 14.33±3.64 30.01 25.38 0.93
      洒剔烯 Sativene 22.80±8.68 20.73±10.78 38.08 51.97 0.73
      长叶烯 Longifolene 16.86±0.23 16.12±0.22 1.38 1.35 0.00**
      石竹烯 Caryophyllene 4.77±1.32 4.93±1.12 27.67 22.69 0.85
      α-石竹烯 α-caryophyllene 4.24±0.98 4.23±1.67 23.07 39.43 0.99
      反式-β-金合欢烯 Trans-β-farnesene 22.78±13.87 21.17±14.03 60.86 66.26 0.85
      海松酸 Pimaric acid 31.97±4.08 33.71±2.33 12.76 6.91 0.45
      山达海松酸 Sandaracopimaric acid 29.55±2.31 32.23±4.77 7.80 14.81 0.21
      左旋海松酸/长叶松酸 Palustric acid/levopimaric acid 400.89±42.67 403.31±36.70 10.64 9.10 0.93
      去氢枞酸 Dehydroabietic 42.34±2.34 41.58±2.01 5.52 4.83 0.59
      枞酸 Abietic acid 160.57±64.52 158.59±20.00 40.18 12.61 0.95
      新枞酸 Neoabietic acid 28.64±4.53 28.86±3.25 15.83 11.25 0.93
      单萜类 Monoterpenes 180.69±6.87 168.34±3.69 3.80 2.19 0.01**
      倍半萜类 Sesquiterpenes 92.35±26.79 87.80±25.77 29.01 29.35 0.79
      二萜类 Diterpenes 693.96±73.33 698.30±54.75 10.57 7.84 0.92

      α-蒎烯含量在单萜中含量最高,在不同抗性马尾松间存在显著差异(p<0.05),高抗马尾松含量较易感马尾松含量高9.28%。β-蒎烯、β-月桂烯、柠檬烯、长叶烯在不同抗性马尾松间有显著差异(p<0.05),且除β-月桂烯外高抗马尾松含量分别高于易感马尾松43.70%、39.37%、4.59%。水芹烯平均含量约为56.00~64.00 mg·g−1、石竹烯平均含量约为4.00~5.50 mg·g−1。长叶蒎烯、环长叶烯、洒剔烯、α-石竹烯、反式-β-金合欢烯、海松酸、山达海松酸、左旋海松酸/长叶松酸、去氢枞酸、枞酸和新枞酸含量在不同抗性马尾松间也无显著差异。

    • 高抗与易感马尾松接种松材线虫1 d后松脂组分中萜类含量略有增加,但无显著差异。对高抗马尾松接种松材线虫后不同时间松脂化学组分均值分析(图6a),结果显示:α-蒎烯、β-月桂烯、柠檬烯、长叶烯和α-石竹烯含量变化规律为先上升后下降,且7 d达最大值15 d达最小值;β-蒎烯和龙脑含量变化规律先上升后下降,且7 d达最大值0 d达最小值;海松酸和去氢枞酸含量变化规律为逐渐上升,且15 d达最大值。对易感马尾松接种松材线虫后不同时间松脂化学组分均值分析(图6b),结果显示:含量先上升后下降且7 d达最大值15 d达最小值的为新枞酸;含量为7 d达最大值0 d达最小值的为反式-β-金合欢烯;含量呈上升趋势15 d达最大值的为海松酸和去氢枞酸;含量7 d达最小值15 d达最大值的为水芹烯和环长叶烯;含量呈下降趋势15 d达最小值的为α-石竹烯和枞酸。

      图  6  高抗与易感马尾松不同接种时间松脂中的萜类组分及含量

      Figure 6.  Terpenoid components and contents in pine oleoresin of resistant and susceptible P. massoniana at different inoculation days.

      α-蒎烯和β-蒎烯含量在接种松材线虫1 d后高抗马尾松显著高于易感马尾松(p<0.05)(图7a);α-蒎烯、β-蒎烯、柠檬烯与长叶烯含量在接种松材线虫7 d后高抗马尾松显著高于易感马尾松(p<0.05)(图7b);在接种松材线虫15 d后各组分在高抗与易感马尾松间无显著差异(图7c)。

      图  7  不同抗性马尾松接种松材线虫1, 7和15 d后萜类含量差异分析

      Figure 7.  Analysis on the difference of terpenoid content of P. massoniana with different resistance after inoculation with pine wood nematode for 1, 7 and 15 days.

    • 参考马尾松松脂化学组分的主要萜类化合物含量,检测松脂中主要萜类化学物对松材线虫的抑制作用。根据所测松脂组分含量及刘青华等[25]研究中马尾松松脂萜类的平均含量,设置不同浓度梯度的α-蒎烯、β-蒎烯、柠檬烯和长叶烯溶液,研究相应萜类对松材线虫的影响。结果表明,与对照组相比,α-蒎烯、β-蒎烯、柠檬烯、长叶烯、β-月桂烯和龙脑溶液的松材线虫平均存活率随着化合物浓度和处理时间的增加而逐渐下降(图8)。在α-蒎烯梯度浓度溶液中,150 mg·g−1浓度下处理24 h松材线虫全部死亡,而在500 mg·g−1浓度下处理0.5 h即造成松材线虫全部死亡(图8A)。在β-蒎烯梯度浓度溶液中,不同浓度溶液处理0.5 h后松材线虫致死率达约50%,处理24 h后松材线虫致死率趋于100%(图8B)。在长叶烯梯度浓度溶液中,10 mg·g−1浓度下处理0.5 h松材线虫达80%致死率(图8C)。在柠檬烯梯度浓度溶液中,3.60 mg·g−1浓度下处理0.5 h后松材线虫致死率趋于100%(图8D)。在β-月桂烯梯度浓度溶液中,1.20 mg·g−1浓度下处理24 h松材线虫致死率达约50%,2.40 mg·g−1浓度下处理24 h松材线虫致死率达约85%(图8E)。在龙脑梯度浓度溶液中,13.00 mg·g−1浓度下处理24 h松材线虫致死率达约50%,50.00 mg·g−1浓度下处理24 h松材线虫致死率达约80%(图8F)。

      图  8  松脂组分体外作用松材线虫致死率

      Figure 8.  Inhibitory effect of resin composition on mean fatality rate of PWN in vitro.

    • 不同砧木马尾松和不同抗性马尾松树干木质部松脂中共检出19种组分,与古研等[27]和张振洪等[28]检出的组分基本一致。α-蒎烯、β-蒎烯、长叶烯、水芹烯、洒剔烯、海松酸、左旋海松酸/长叶松酸、脱氢枞酸、枞酸和新枞酸为松脂中含量较高的组分。

      不同砧木马尾松松脂组分含量响应松材线虫变化差异较小。松材线虫入侵松属植物后,刺激分泌纤维素酶等细胞壁相关蛋白,类毒液过敏原蛋白等激发寄主产生防御反应,进而在接种后的7 d左右引起萜烯类次级代谢产物的大量积累[16]。本研究中,在两种砧木马尾松接种松材线虫7 d时,新枞酸仅在马尾松砧木中达最大值,而海松酸仅在湿地松砧木中达最大值,且萜类组分含量在两种砧木马尾松间均无显著差异。马尾松对松材线虫抗性可能与砧木无关,马尾松更易感染松材线虫病可能由于自身不断进化,形成更适宜松材线虫寄生的群体组成结构[29]

      马尾松响应松材线虫入侵进行的主动防御造成萜烯类物质大量增加,而不同抗性马尾松接种松材线虫后松脂组分变化情况有所不同。抗性指数越高,产脂量越高,其单萜含量越高[30]。高抗马尾松中α-蒎烯、β-蒎烯、β-月桂烯、柠檬烯、龙脑、长叶烯与α-石竹烯含量在接种7 d时达最大值,含量动态变化呈先上升后下降趋势。易感马尾松中反式-β-金合欢烯、去氢枞酸与新枞酸含量在接种7 d时达最大值。接种松材线虫7 d时,α-蒎烯、β-蒎烯、长叶烯与柠檬烯含量在高抗马尾松与易感马尾松之间存在显著差异(p<0.05),且均为高抗马尾松显著高于易感马尾松。Zhao等[31]研究发现,松材线虫入侵后,马尾松释放的挥发性物质主要为α-蒎烯、β-蒎烯和长叶烯三种蒎烯类物质;Kuroda等[32]研究发现,松材线虫入侵黑松后,单萜的含量明显增加,其中α-蒎烯含量增加到健康松树的2~4倍,β-蒎烯和几种其他的单萜含量是健康松树的2~3倍;本研究结果与上述研究结果基本一致。

      通过将α-蒎烯、β-蒎烯、长叶烯、柠檬烯、β-月桂烯与龙脑萜类组分对松材线虫进一步梯度浓度试验表明:α-蒎烯溶液随浓度升高对松材线虫毒害作用越大,而150 mg·g−1浓度下处理24 h松材线虫全部死亡。β-蒎烯溶液不同浓度溶液处理0.5 h后松材线虫即达到约50%致死率,对松材线虫抑制作用与溶液浓度无关。长叶烯溶液随浓度升高对松材线虫抑制作用越大,10 mg·g−1浓度下处理0.5 h松材线虫达到80%致死率。柠檬烯溶液在3.60 mg·g−1浓度下处理0.5 h后松材线虫存活率趋于100%。β-月桂烯1.20 mg·g−1浓度下处理24 h松材线虫致死率约50%。龙脑13.00 mg·g−1浓度下处理24 h松材线虫致死率达约50%,且致死率升高较慢。上述结果与Liu等[33]对马尾松研究结果相同,α-蒎烯、β-蒎烯、长叶烯和柠檬烯在低浓度下即可抑制松材线虫的存活,是马尾松萜烯类主要防御成分;Niu等[34]对马尾松研究发现也得出相似结论,α-蒎烯、β-蒎烯等单萜类化合物在低浓度下具有抑制松材线虫繁殖的作用。

    • 马尾松和湿地松树干木质部松脂中共检测出19种松脂组分,α-蒎烯、β-蒎烯、水芹烯、反式-β-金合欢烯、海松酸、山达海松酸、左旋海松酸/长叶松酸、去氢枞酸、枞酸和新枞酸在松脂中含量占比较高。松材线虫入侵树体后,萜烯类次生代谢产物在7 d后大量积累并发生显著变化。α-蒎烯、β-蒎烯、β-月桂烯、柠檬烯、龙脑、海松酸和新枞酸含量在不同砧木马尾松接种松材线虫7 d时达最大值,其组分含量在两种砧木间无显著差异性,由此可得,砧木对马尾松松材线虫抗性并无影响。接种松材线虫7 d时α-蒎烯、β-蒎烯、β-月桂烯、柠檬烯、龙脑、长叶烯、α-石竹烯、反式-β-金合欢烯和新枞酸含量在不同抗性马尾松间动态变化有所不同,α-蒎烯、β-蒎烯、柠檬烯、长叶烯为抗性马尾松显著高于易感马尾松(p<0.05);α-蒎烯、β-蒎烯、柠檬烯与长叶烯低浓度下抑制松材线虫活性,与马尾松抗性有关,是马尾松萜烯类主要防御成分。

参考文献 (34)

目录

    /

    返回文章
    返回