• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山鸡椒LcGPPS表达模式及其与LcGGPPS蛋白互作分析

曹佩 陈益存 高暝 郭浩波 汪阳东

引用本文:
Citation:

山鸡椒LcGPPS表达模式及其与LcGGPPS蛋白互作分析

    作者简介: 曹佩(1992-), 女, 河南信阳人, 硕士研究生, 研究方向为林木遗传育种.
    通讯作者: 汪阳东, Wyd11111@126.com
  • 基金项目:

    国家自然科学基金项目 31370576

  • 中图分类号: S718.46

Gene Expression Pattern of LcGPPS and Its Interaction with LcGGPPSs in Litsea cubeba

    Corresponding author: WANG Yang-dong, Wyd11111@126.com
  • CLC number: S718.46

  • 摘要: 目的 鉴定与山鸡椒精油合成关键酶香叶基二磷酸合酶(LcGPPS)的互作蛋白,为揭示山鸡椒精油主要成分单萜物质的合成机理奠定基础。 方法 通过本地Blast搜索山鸡椒果实转录组数据库,采用RT-PCR克隆山鸡椒GPPS基因(编码异质GPPS小亚基的LcGPPS.SSU1)和山鸡椒GGPPS基因(LcGGPPS1LcGGPPS3);利用qRT-PCR分析其组织特异性表达模式,通过蛋白互作预测和酵母双杂实验验证LcGPPS.SSU1分别与LcGGPPS1LcGGPPS3的互作关系。 结果 克隆得到LcGPPS.SSU1LcGGPPS1LcGGPPS3 3条基因序列,基因表达模式分析表明,LcGPPS.SSU1特异性地在花和果实中高水平表达;蛋白结构互作预测结果显示,LcGPPS.SSU1可以分别与LcGGPPS1和LcGGPPS3互作形成异质二聚体;经过酵母双杂交实验验证发现,仅LcGGPPS3能与LcGPPS.SSU1发生互作。 结论 LcGPPS.SSU1通过与LcGGPPS3蛋白发生互作从而在山鸡椒萜类合成途径中发挥作用,为深入研究山鸡椒萜类合成机制提供参考。
  • 图 1  LcGPPS.SSUsLcGGPPSs在山鸡椒果实发育过程中的表达模式

    Figure 1.  The expression patterns of LcGPPS.SSUs and LcGGPPSs in fruits maturation

    图 2  LcGPPS.SSUsLcGGPPSs在山鸡椒不同组织中的表达模式

    Figure 2.  The expression patterns of LcGPPS.SSUs and LcGGPPSs in different tissues in L. cubeba

    图 3  LcGPPS.SSU1LcGGPPS1LcGGPPS3家族基因ORF扩增产物

    Figure 3.  The PCR amplification product of ORF of LcGPPS.SSU1LcGGPPS1 and LcGGPPS3

    图 4  LcGPPS.SSU1(红色)与LcGGPPS1 (橙色)的二聚体结构

    Figure 4.  Dimeric structures of LcGPPS.SSU1(red) and LcGGPPS1(orange)

    图 5  诱饵质粒自激活验证及捕获质粒假阳性验证

    Figure 5.  Verification of Y2HGold-pGBKT7-SU1 for autoactivation and toxicity and false positive for pGADT7-L1 and pGADT7-L3

    图 6  LcGPPS.SSU1分别和LcGGPPS1与LcGGPPS3的蛋白互作验证以及阴性和阳性对照

    Figure 6.  Verifying of the proteins interactions between LcGPPS. SSU1and LcGGPPS1/3 and negative and positive control

    图 7  山鸡椒与其它物种GPPS/GGPPS系统进化分析

    Figure 7.  Phylogenetic relationship between L. cubeba and other plants GPPS/GGPPS families

    表 1  用于表达模式分析的10条基因的qRT-PCR引物及登录号

    Table 1.  The primers for expression pattern qRT-PCR of ten genes and their accession numbers

    登录号
    Accession numbers in GenBank
    基因名称
    Gene name
    引物名称
    Primer names
    序列(5′-3′)
    Sequences (5′-3′)
    扩增长度
    Amplicons Length/bp
    KX843686 LcGPPS.SSU1 LcGPPS.SSU1F TTGGTAGAGGCACAGTACATGAAG 228
    LcGPPS.SSU1R CGCCTTCTCTGCCAACACCATCCAAC
    KX843687 LcGPPS.SSU2 LcGPPS.SSU2F GTAACATCAAGGATATCATCCAC 103
    LcGPPS.SSU2R GCATCTTGGGCGGTGGATCGGA
    KX843688 LcGPPS.SSU3 LcGPPS.SSU3F ATGTCCATACCCGAATCAGTTGCTG 118
    LcGPPS.SSU3R GAAGAAGGCTTGCAACATGAATC
    KX843691 LcGGPPS1 LcGGPPS1F AGATCCACGAGGCGATGCGCTACTC 247
    LcGGPPS1R GCGAGGACGGCGACATCCTCACCG
    KX843692 LcGGPPS2 LcGGPPS2F ATCTTCGGATACGTCACCTTCTC 109
    LcGGPPS2R TGCGAGGTGTATAGGGCTGCTGT
    KX843693 LcGGPPS3 LcGGPPS3F GCCCATGCGCTACTCCCTCTTCG 229
    LcGGPPS3R GGCGGCGGTCTCGCCGAAGGCCTT
    KX843694 LcGGPPS4 LcGGPPS4F GTCCTGTTGGAAGGAGCAGTTGTGA 177
    LcGGPPS4R AGAGGCGCTGCCTTATTGGGATC
    KX843695 LcGGPPS5 LcGGPPS5F TTGGTGAGGATATTGCCGTCCTCG 132
    LcGGPPS5R CAACCGCCTTGGACAGCACCG
    KX843696 LcGGPPS6 LcGGPPS6F TCTAACTTGTCAAGTGGATCGAAATC 304
    LcGGPPS6R GAACAGCTCTGTCTAGAGCCTGAT
    KX843697 LcGGPPS7 LcGGPPS7F TTCTGTTCTGGTTTCCCTGTTGCC 153
    LcGGPPS7R GGTTCCTCAACCGCAGAGCTTC
    下载: 导出CSV

    表 2  LcGPPS.SSU1LcGGPPS1LcGGPPS3的登录号和引物

    Table 2.  The accession numbers and primer sequences of LcGPPS.SSU1LcGGPPS1 and LcGGPPS3

    登录号
    Accession numbers
    in GenBank
    基因名称
    Gene name
    引物名称
    Primer names
    序列(5′-3′)
    Sequences (5′-3′)
    KX843686 LcGPPS.SSU1 LcGPPS.SSU1F GCTGCCATCCTAAACCATTTCA
    LcGPPS.SSU1R CTGTACACAGCGAGTGGTATC
    EcoRISSU1F CATATGGCCATGGAGGCCGTGGCTGCCATCCTAAACCATT
    PstISSU1R TGCTAGTTATGCGGCCGCCTGTACACAGCGAGTGGTATC
    KX843691 LcGGPPS1 LcGGPPS1F GCTTCTTTCGCTTTGATTCCT
    LcGGPPS1R GTTCTGTCTGTAAGCAATGT
    EcoRIGPS1F ATGGCCATGGAGGCCAGTGTGGCTTCTTTCGCTTTGATTCC
    BamHIGPS1R TGCAGCTCGAGCTCGATGGATCGTTCTGTCTGTAAGCAATGT
    KX843693 LcGGPPS3 LcGGPPS3F AGTTCTTCAGTGCATCTAGCTT
    LcGGPPS3R GTTGTTTCTGCAAGCAATG
    NcoIGPS3F CCAGATTACGCTCATATGGCCATGAGTTCTTCAGTGCATCTAGCTT
    BamHIGPS3R TGCAGCTCGAGCTCGATGGATCGTTGTTTCTGCAAGCAATGAAATC
    下载: 导出CSV

    表 3  进化树中所有序列物种来源及登录号

    Table 3.  the species of sequences included in the tree and their accession number in NCBI

    序号
    No.
    缩写
    Abbreviation
    in the tree
    物种
    Species
    登录号
    Accession
    number
    序号
    No.
    缩写
    Abbreviation
    in the tree
    物种
    Species
    登录号
    Accession
    number
    1 EuGGPPS Elaeagnus umbellata ACO59905 21 LiSSU Lavandula intermedia AGH33891.1
    2 TkGGPPS Taraxacum kok-saghyz ALJ30146.1 22 AtSSU Arabidopsis thaliana AAG40013.1
    3 PbGGPPS Plectranthus barbatus ALE19959.1 23 GmSSU Glycine max NP_001238613.1
    4 PmGGPPS Pinus massoniana AGU43761.1 24 MsSSU Medicago sativa AEL29573.1
    5 JcGGPPS Jatropha curcas NP_001295715.1 25 VvSSU Vitis vinifera XP_002278023
    6 CaGGPPS Corylus avellana ABW06960.1 26 OsSSU Oryza sativa EAY87007.1
    7 TcGGPPS Taxus canadensis AAD16018.1 27 HbSSU Hevea brasiliensis BAF98300
    8 MtGGPPS Medicago truncatula XP_003629488.1 28 AgGPPS2 Abies grandis AAN01134.1
    9 MsGGPPS Medicago sativa ADG01841 29 AgGPPS1 Abies grandis AAN01133.1
    10 GbGGPPS Ginkgo biloba AAQ72786.1 30 AgGPPS3 Abies grandis AAN01135.1
    11 NaGGPPS Nicotiana attenuata ABQ53935.1 31 SmGPPS.SSUI Salvia miltiorrhiza JN831108
    12 CrGPPS.LSU Catharanthus roseus AGL91645.1 32 SmGPPS.SSUII.1 Salvia miltiorrhiza JN831109
    13 MpGPPS.LSU Mentha piperita AAF08793.1 33 SmGPPS.SSUII.2 Salvia miltiorrhiza JN831110
    14 AmGPPS.LSU Antirrhinum majus AAS82860.1 34 SmGGPPS1 Salvia miltiorrhiza FJ643617
    15 SmGPPS.LSU Salvia miltiorrhiza AEZ55681.1 35 SmGGPPS2 Salvia miltiorrhiza JN831112
    16 MpSSU Mentha x piperita AAF08792.1 36 SmGGPPS3 Salvia miltiorrhiza JN831113
    17 HlSSU Humulus lupulus ACQ90681.1 37 AtGGPPS2 Arabidopsis thaliana NM_127943.2
    18 LcSSU Leucosceptrum canum ALT07956.1 38 AtGGPPS11 Arabidopsis thaliana NM_113869.1
    19 CbSSU Clarkia breweri AAS82870.1 39 CsGGPPS Croton sublyratus BAA86284.1
    20 AmSSU Antirrhinum majus AAS82859.1 40 AgGGPPS Abies grandis AAL17614.2
    下载: 导出CSV
  • [1]

    Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases: Molecular biology and phylogenetic analysis[J]. Proceedings of the National Academy of Sciences, 1998, 95(8): 4126-4133. doi: 10.1073/pnas.95.8.4126
    [2] 王凌健, 方欣, 杨长青, 等. 植物萜类次生代谢及其调控[J]. 中国科学: 生命科学, 2013, 43(12): 1030-1046.

    [3] 张长波, 孙红霞, 巩中军, 等. 植物萜类化合物的天然合成途径及其相关合酶[J]. 植物生理学通讯, 2007, 43(4): 779-786.

    [4]

    Bouvier F, Rahier A, Camara B. Biogenesis, molecular regulation and function of plant isoprenoids[J]. Progress in Lipid Research, 2005, 44(6): 357-429. doi: 10.1016/j.plipres.2005.09.003
    [5]

    Schmidt A, Gershenzon J. Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies)[J]. Phytochemistry, 2008, 69(1): 49-57. doi: 10.1016/j.phytochem.2007.06.022
    [6]

    Wang G, Dixon R A. Heterodimeric geranyl (geranyl) diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis[J]. Proceedings of the National Academy of Sciences, 2009, 106(24): 9914-9919. doi: 10.1073/pnas.0904069106
    [7]

    Chang T H, Hsieh F L, Ko T P, et al. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation[J]. The Plant Cell, 2010, 22(2): 454-467. doi: 10.1105/tpc.109.071738
    [8]

    Kavanagh K L, Dunford J E, Bunkoczi G, et al. The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding[J]. Journal of Biological Chemistry, 2006, 281(31): 22004-22012. doi: 10.1074/jbc.M602603200
    [9]

    Raia A, Smitab S S, Singha A K, et al. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis[J]. Molecular Plant, 2013, 6(5): 1531-1549. doi: 10.1093/mp/sst058
    [10]

    Tholl D, Kish C M, Orlova I, et al. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases[J]. The Plant Cell, 2004, 16(4): 977-992. doi: 10.1105/tpc.020156
    [11] 方学军. 山苍子油的功能及应用[J]. 湖南林业科技, 2007, 34(3): 82-84. doi: 10.3969/j.issn.1003-5710.2007.03.032

    [12]

    Si L, Chen Y, Han X, et al. Chemical composition of essential oils of Litsea cubeba harvested from its distribution areas in China[J]. Molecules, 2012, 17(6): 7057-7066. doi: 10.3390/molecules17067057
    [13] 杨保刚, 丁晓雯. 山苍籽及其精油研究利用现状分析[J]. 食品与发酵科技, 2004, 40(4): 10-14. doi: 10.3969/j.issn.1674-506X.2004.04.003

    [14]

    Chang Y T, Chu F H. Molecular cloning and characterization of monoterpene synthases from Litsea cubeba (Lour. ) Persoon[J]. Tree Genetics & Genomes, 2011, 7(4): 835-844.
    [15] 刘英冠, 吴庆珂, 何关顺, 等. 山鸡椒1-脱氧木酮糖-5-磷酸还原异构酶DXR基因的克隆和SNP分析[J]. 林业科学研究, 2015, 25(1): 93-100.

    [16]

    Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction[J]. Nature Protocols, 2010, 5(4): 725-738. doi: 10.1038/nprot.2010.5
    [17]

    Orlova I, Nagegowda D A, Kish C M, et al. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta[J]. The Plant Cell, 2009, 21(12): 4002-4017.
    [18]

    Hemmerlin A, Harwood J L, Bach T J. A raison d'etre for two distinct pathways in the early steps of plant isoprenoid biosynthesis?[J]. Progress in Lipid Research, 2012, 51(2): 95-148. doi: 10.1016/j.plipres.2011.12.001
  • [1] 宣磊王芝权殷云龙华建峰 . 中山杉406ThSHR3基因的克隆、表达及蛋白互作研究. 林业科学研究, 2021, 34(4): 32-39. doi: 10.13275/j.cnki.lykxyj.2021.04.004
    [2] 袁婷婷朱成磊杨克彬宋新章高志民 . 毛竹硝态氮转运蛋白家族PeNPFs基因鉴定及其表达特性分析. 林业科学研究, 2021, 34(3): 1-12. doi: 10.13275/j.cnki.lykxyj.2021.03.001
    [3] 戴玉成吴兴亮徐梅卿 . 山鸡椒上一种新的干基腐朽病. 林业科学研究, 2002, 15(5): 555-558.
    [4] 何文广汪阳东陈益存高暝吴立文许自龙曹佩李红盛赵耘霄焦玉莲 . 山鸡椒雌花花芽分化形态特征及碳氮营养变化. 林业科学研究, 2018, 31(6): 154-160. doi: 10.13275/j.cnki.lykxyj.2018.06.021
    [5] 刘英冠吴庆珂何关顺汪阳东杨素素陈益存高暝 . 山鸡椒1-脱氧木酮糖-5-磷酸还原异构酶 DXR基因的克隆和SNP分析. 林业科学研究, 2015, 28(1): 93-100.
    [6] 林萍周长富姚小华曹永庆 . 普通油茶两个Δ-12脂肪酸脱氢酶基因序列特征及表达模式研究. 林业科学研究, 2016, 29(5): 743-751.
    [7] 冯童禹乔桂荣蒋晶邱文敏韩小娇卓仁英刘明英 . 超积累型东南景天Sa12F279基因的抗逆表达响应及功能关联分析. 林业科学研究, 2020, 33(3): 12-21. doi: 10.13275/j.cnki.lykxyj.2020.03.002
    [8] 王鑫钱婷婷曾庆银 . 日本落叶松谷胱苷肽还原酶的生化特性研究. 林业科学研究, 2013, 26(S1): 25-32.
    [9] 鲁俊倩武舒钟姗辰张伟溪苏晓华张冰玉 . ‘84K’杨组氨酸激酶基因PaHK3b的克隆及功能分析. 林业科学研究, 2021, 34(1): 26-34. doi: 10.13275/j.cnki.lykxyj.2021.01.004
    [10] 詹妮谢耀坚陈鸿鹏刘果 . 巨桉EXP基因家族的生物信息学分析. 林业科学研究, 2018, 31(6): 39-46. doi: 10.13275/j.cnki.lykxyj.2018.06.006
    [11] 赵震杨桂燕张凤娇高彩球 . 刚毛柽柳 TheIF1A 基因的互作蛋白及其表达模式分析. 林业科学研究, 2015, 28(1): 17-22.
    [12] 魏凯莉周厚君江成赵岩秋宋学勤卢孟柱 . 杨树次生壁纤维素合酶的表达与互作模式分析. 林业科学研究, 2017, 30(2): 245-253. doi: 10.13275/j.cnki.lykxyj.2017.02.009
    [13] 王楠胡宝全王春国宋文芹陈成彬 . 黑杨三倍体与二倍体叶片中miRNA表达差异研究. 林业科学研究, 2013, 26(S1): 33-38.
    [14] 梁军姜俊清刘会香贾秀贞赵嘉平王媛 . 我国杨树与溃疡病菌互作的病理学研究. 林业科学研究, 2005, 18(2): 214-221.
    [15] 孙化雨娄永峰李利超赵韩生高志民 . 毛竹TIPs基因家族成员组织表达模式研究. 林业科学研究, 2016, 29(4): 521-528.
    [16] 杨海昕刘晓莹詹亚光范桂枝 . 白桦BpAMT基因家族鉴定及表达模式分析. 林业科学研究, 2023, 36(2): 133-143. doi: 10.12403/j.1001-1498.20220242
    [17] 徐向东任逸秋张利李煜王丽娟卢孟柱 . 杨树PIF基因家族成员表达模式研究. 林业科学研究, 2018, 31(2): 19-25. doi: 10.13275/j.cnki.lykxyj.2018.02.003
    [18] 胡梦璇宋学勤刘颖丽赵树堂 . 杨树MYC基因家族成员表达模式研究. 林业科学研究, 2023, 36(3): 32-40. doi: 10.12403/j.1001-1498.20220503
    [19] 王思宁孙化雨李利超杨意宏徐浩赵韩生高志民 . 毛竹PeDWF4基因克隆及表达模式分析. 林业科学研究, 2018, 31(5): 50-56. doi: 10.13275/j.cnki.lykxyj.2018.05.007
    [20] 董虹妤刘青华金国庆丰忠平甘振栋周志春 . 马尾松3代种质幼林生长性状遗传效应及其与环境互作. 林业科学研究, 2015, 28(6): 775-780.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  4264
  • HTML全文浏览量:  1081
  • PDF下载量:  652
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-13
  • 刊出日期:  2017-12-01

山鸡椒LcGPPS表达模式及其与LcGGPPS蛋白互作分析

    通讯作者: 汪阳东, Wyd11111@126.com
    作者简介: 曹佩(1992-), 女, 河南信阳人, 硕士研究生, 研究方向为林木遗传育种
  • 1. 中国林业科学研究院亚热带林业研究所, 浙江 杭州 311400
  • 2. 美国田纳西大学生物化学系, 田纳西州 诺克斯维尔TN 37996
基金项目:  国家自然科学基金项目 31370576

摘要:  目的 鉴定与山鸡椒精油合成关键酶香叶基二磷酸合酶(LcGPPS)的互作蛋白,为揭示山鸡椒精油主要成分单萜物质的合成机理奠定基础。 方法 通过本地Blast搜索山鸡椒果实转录组数据库,采用RT-PCR克隆山鸡椒GPPS基因(编码异质GPPS小亚基的LcGPPS.SSU1)和山鸡椒GGPPS基因(LcGGPPS1LcGGPPS3);利用qRT-PCR分析其组织特异性表达模式,通过蛋白互作预测和酵母双杂实验验证LcGPPS.SSU1分别与LcGGPPS1LcGGPPS3的互作关系。 结果 克隆得到LcGPPS.SSU1LcGGPPS1LcGGPPS3 3条基因序列,基因表达模式分析表明,LcGPPS.SSU1特异性地在花和果实中高水平表达;蛋白结构互作预测结果显示,LcGPPS.SSU1可以分别与LcGGPPS1和LcGGPPS3互作形成异质二聚体;经过酵母双杂交实验验证发现,仅LcGGPPS3能与LcGPPS.SSU1发生互作。 结论 LcGPPS.SSU1通过与LcGGPPS3蛋白发生互作从而在山鸡椒萜类合成途径中发挥作用,为深入研究山鸡椒萜类合成机制提供参考。

English Abstract

  • 香叶基焦磷酸合酶(GPPS)是调控萜类化合物生物合成途径中调控节点行使作用的关键酶,催化底物C5前体异戊烯基二磷酸酯(IPP)及其异构体二甲基烯丙基二磷酸酯(DMAPP)合成单萜前体香叶基焦磷酸GPP,竞争性地将底物流导向单萜合成,为单萜的合成提供了基本的碳骨架,也为后续各种化合物的形成提供了基础[1]。GPPS在单萜合成过程中起着关键作用,参与防御反应、吸引传粉等生理生化过程,在植物生长发育中不可或缺[2]

    GPPS在自然界中以异质二聚体和同质二聚体的形式存在,均以催化合成GPP为唯一产物[3]。同质二聚体GPPS由2个相同亚基,由GPPS基因编码组成,在自然界中广泛存在[4],目前已从裸子植物和被子植物中分离、鉴定出GPPS基因[5-6];而异质二聚体GPPS则由一大一小2个亚基组成,分别由大亚基GPPS.LSU和小亚基GPPS.SSU编码。GPPS.LSU是一类异戊烯基转移酶类似蛋白(prenyltransferase,PTS-like protein),通常与负责催化合成二萜化合物前体香叶基香叶基焦磷酸(GGPP)的香叶基香叶基焦磷酸合酶(GGPPS)有70%的序列相似性[7-8],同时,GGPPS也可以充当大亚基搭档,与小亚基形成异质二聚体GPPS,催化生成GPP,从而调节代谢底物转向单萜物质的合成[9]。目前,GPPS.LSU的研究主要是观察其单独表达是否有活性,能否与GPPS.SSU互作,以及与GPPS.SSU共表达后的催化活性。文献报道仅从少数几种植物中克隆出GPPS.LSU,包括薄荷(Mentha piperita L.)MpGPPS.LSU、啤酒花(Humulus lupulus L.)HlGPPS.LSU、金鱼草(Antirrhinum majus L.)AmGPPS.LSU和长春花(Catharanthus roseus (L.) G. Don.)CrGPPS.LSU等,其中,MpGPPS.LSUHlGPPS.LSU单独表达时均没有活性,AmGPPS.LSU单独表达时具有GGPPS催化活性,CrGPPS.LSU单独表达时具有GPPS和GGPPS的双催化活性[6-7, 9-10]

    山鸡椒(Litsea cubeba (Lour.) Pers.)又名山苍子、木姜子,多年生落叶小乔木,属樟科(Lauraceae)木姜子属(Litsea Lam.),广泛分布于我国长江以南,资源丰富。山苍子的根、叶和果实中均含有精油,其中以果实中含量最高,高达85%左右[11-12]。精油中的成分主要是单萜和倍半萜化合物,其主要成分柠檬醛更是合成紫罗兰酮系列名贵香料的主料[13];然而,目前我国的山鸡椒主要以野生资源为主,精油产量和品质受环境影响较大[12],为培育优良品种,提高山鸡椒精油产量,改善精油品质,迫切需要探究山鸡椒体内单萜合成的调控机制。目前,关于山鸡椒体内萜类合成途径的研究甚少,仅有LcDXRLcTPS1LcTPS2LcTPS3被克隆验证[14-15],而GPPS作为单萜合成途径的关键节点,在山鸡椒中尚无文献报道。因此,本研究以山鸡椒的幼果以及各组织为试验材料,分析了LcGPPSsLcGGPPSs的表达模式,并克隆了LcGPPS.SSU1LcGGPPS1LcGGPPS3基因,对蛋白之间的互作进行探索验证,以期为山鸡椒果实中单萜的形成和调控机制研究提供理论参考,为提高精油产量和品质的遗传育种奠定基础。

    • 所采用的山鸡椒植株新鲜组织(花、花芽、叶芽、嫩叶、茎、果实和根等),采自浙江杭州市富阳区中国林科院亚热带林业研究所黄公望森林公园内,采后迅速置于液氮中,带回实验室保存在-80℃冰箱,留于后续实验。

    • 由于GPPS.LSU已鉴定的物种较少,且与GGPPS具有较高的相似性,为了获得更全面的序列,作者在山鸡椒的果实转录组数据库(NCBI登录号:SRA080286)中分别利用拟南芥(Arabidopsis thaliana (L.) Heynh.)GGPPS11(NM_113869)和薄荷MpGPPS.LSU(AAF08792)核苷酸序列,以1×10-5为临界值,搜索相似序列,将得到的候选序列经过寻找编码框(ORF Finder, https://www.ncbi.nlm.nih.gov/orffinder/),翻译成氨基酸序列后经BLASTP分析(https://blast.ncbi.nlm.nih.gov/Blast.cgi),保守域分析验证(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi),共得到10条目的序列。

    • 采集山鸡椒的花、花芽、叶芽、嫩叶、茎、果实和根等组织,总RNA提取采用EASYpin Plus植物RNA快速提取试剂盒(北京艾德莱生物科技有限公司)。利用美国Invitrogen公司反转录试剂盒SuperScriptⅢⅠst Strand cDNA合成第一链cDNA,用于后续qRT-PCR分析和基因克隆实验。

    • 采用qRT-PCR分析LcGPPSsLcGGPPSs基因在正常生长的山鸡椒不同组织间和果实发育过程中的表达模式。在4条序列的保守区域至非保守区域设计引物,测序验证,以微管蛋白α基因(TUA)为内参基因,检测山鸡椒不同部位这10个基因的表达水平,具体操作步骤按SYBR Premix Ex TaqTM (TaKaRa, Tokyo, Japan)说明书进行。以灭菌双蒸水为模板作为空白对照,在Applied Biosystems Prism 7300仪器(ABI,美国)上进行,目的基因相对表达水平利用2-△△Ct方法计算,所有反应均为2次生物学重复,4次技术性重复。qRT-PCR程序如下:95℃ 30 s 1个循环,95℃ 5 s、60℃ 31 s, 35个循环。用于这10条基因的qRT-PCR引物见表 1

      表 1  用于表达模式分析的10条基因的qRT-PCR引物及登录号

      Table 1.  The primers for expression pattern qRT-PCR of ten genes and their accession numbers

      登录号
      Accession numbers in GenBank
      基因名称
      Gene name
      引物名称
      Primer names
      序列(5′-3′)
      Sequences (5′-3′)
      扩增长度
      Amplicons Length/bp
      KX843686 LcGPPS.SSU1 LcGPPS.SSU1F TTGGTAGAGGCACAGTACATGAAG 228
      LcGPPS.SSU1R CGCCTTCTCTGCCAACACCATCCAAC
      KX843687 LcGPPS.SSU2 LcGPPS.SSU2F GTAACATCAAGGATATCATCCAC 103
      LcGPPS.SSU2R GCATCTTGGGCGGTGGATCGGA
      KX843688 LcGPPS.SSU3 LcGPPS.SSU3F ATGTCCATACCCGAATCAGTTGCTG 118
      LcGPPS.SSU3R GAAGAAGGCTTGCAACATGAATC
      KX843691 LcGGPPS1 LcGGPPS1F AGATCCACGAGGCGATGCGCTACTC 247
      LcGGPPS1R GCGAGGACGGCGACATCCTCACCG
      KX843692 LcGGPPS2 LcGGPPS2F ATCTTCGGATACGTCACCTTCTC 109
      LcGGPPS2R TGCGAGGTGTATAGGGCTGCTGT
      KX843693 LcGGPPS3 LcGGPPS3F GCCCATGCGCTACTCCCTCTTCG 229
      LcGGPPS3R GGCGGCGGTCTCGCCGAAGGCCTT
      KX843694 LcGGPPS4 LcGGPPS4F GTCCTGTTGGAAGGAGCAGTTGTGA 177
      LcGGPPS4R AGAGGCGCTGCCTTATTGGGATC
      KX843695 LcGGPPS5 LcGGPPS5F TTGGTGAGGATATTGCCGTCCTCG 132
      LcGGPPS5R CAACCGCCTTGGACAGCACCG
      KX843696 LcGGPPS6 LcGGPPS6F TCTAACTTGTCAAGTGGATCGAAATC 304
      LcGGPPS6R GAACAGCTCTGTCTAGAGCCTGAT
      KX843697 LcGGPPS7 LcGGPPS7F TTCTGTTCTGGTTTCCCTGTTGCC 153
      LcGGPPS7R GGTTCCTCAACCGCAGAGCTTC

      1.5 LcGPPSLcGGPPSs基因的克隆

      根据LcGPPS.SSU1LcGGPPS1LcGGPPS3的序列信息,分别在其开放阅读框上、下游设计特异性引物,采用PrimeSTAR Max DNA Polymerase mix(TakaRa)扩增cDNA序列。将获得的PCR产物连接于pClone007载体上,并送到测序公司(北京擎科新业生物技术有限公司,杭州)进行测序。用于扩增这3条基因的引物见表 2

      表 2  LcGPPS.SSU1LcGGPPS1LcGGPPS3的登录号和引物

      Table 2.  The accession numbers and primer sequences of LcGPPS.SSU1LcGGPPS1 and LcGGPPS3

      登录号
      Accession numbers
      in GenBank
      基因名称
      Gene name
      引物名称
      Primer names
      序列(5′-3′)
      Sequences (5′-3′)
      KX843686 LcGPPS.SSU1 LcGPPS.SSU1F GCTGCCATCCTAAACCATTTCA
      LcGPPS.SSU1R CTGTACACAGCGAGTGGTATC
      EcoRISSU1F CATATGGCCATGGAGGCCGTGGCTGCCATCCTAAACCATT
      PstISSU1R TGCTAGTTATGCGGCCGCCTGTACACAGCGAGTGGTATC
      KX843691 LcGGPPS1 LcGGPPS1F GCTTCTTTCGCTTTGATTCCT
      LcGGPPS1R GTTCTGTCTGTAAGCAATGT
      EcoRIGPS1F ATGGCCATGGAGGCCAGTGTGGCTTCTTTCGCTTTGATTCC
      BamHIGPS1R TGCAGCTCGAGCTCGATGGATCGTTCTGTCTGTAAGCAATGT
      KX843693 LcGGPPS3 LcGGPPS3F AGTTCTTCAGTGCATCTAGCTT
      LcGGPPS3R GTTGTTTCTGCAAGCAATG
      NcoIGPS3F CCAGATTACGCTCATATGGCCATGAGTTCTTCAGTGCATCTAGCTT
      BamHIGPS3R TGCAGCTCGAGCTCGATGGATCGTTGTTTCTGCAAGCAATGAAATC
    • 利用ExPaSy ProtParam(http://web.expasy.org/protparam/)在线计算蛋白质的分子质量和理论等电点等基本信息,运用I-TASSER v4.3对LcGPPS和LcGGPPSs的高级结构进行预测与分析[16],多序列比对使用Clustalx、DNAMAN、Bioedit等软件;采用邻接算法(NJ),使用MEGA 4.0软件构建进化树,bootstrap检测设置重复为1 000次。

    • 根据LcGPPS.SSU1LcGGPPS1LcGGPPS3序列分别设计上、下游带质粒酶切位点引物(表 2)PrimeSTAR Max DNA Polymerase酶用于PCR扩增,PCR反应程序:98℃预变性2 min;98℃变性10 s,55℃退火15 s,72℃延伸60 s,33个循环;72℃延伸5 min;4℃保存。产物用1%的琼脂糖凝胶电泳检测,切胶回收目的片段。同时分别用EcoR Ⅰ/Pst Ⅰ双酶切pGBKT7载体,EcoR Ⅰ/BamH Ⅰ、Nco Ⅰ/BamH Ⅰ双酶切pGADT7载体,37℃孵育2 h,酶切结束后1%的琼脂糖凝胶电泳,切胶回收,利用无缝克隆,连接酶切后的载体和目的片段,转化大肠杆菌DH5α,分别经卡那霉素抗性和氨苄霉素抗性筛选,挑选阳性转化子,提取质粒,PCR酶切验证后,由公司测序验证。

    • 将构建好的pGBKT7-SU1转化到酵母Y2HGold菌株中,同时在SD/-Trp、SD/-Trp/X、SD/-Trp/X/A固体培养基上培养3~5 d后观察,比较菌落生长情况,确定蛋白是否有自激活作用和菌体毒性。pGBKT7原型质粒分别与pGADT7-L1和pGADT7-L3共转化Y2HGold,涂布于DDO/X、DDO/X/A、QDO/X/A固体培养基上,培养3~5 d后观察,比较菌落生长情况,进行假阳性验证。

    • 以共转化pGBKT7-53质粒和pGADT7-T到Y2HGold菌株作阳性对照实验,共转化pGBKT7-Lam质粒和pGADT7-T到Y2HGold菌株中做阴性对照实验,将pGADT7-L1质粒、pGADT7-L3质粒分别和pGBKT7-SUl质粒共转化到Y2HGold菌株中,分别在DDO/X、DDO/ X /A、QDO/X/A固体培养基上培养,观察菌落的生长情况。

    • 在山鸡椒的果实转录组数据库中,共搜索得到10条目标序列,其中, 3条LcGPPS.SSU序列,分别命名为LcGPPS.SSU1LcGPPS.SSU2LcGPPS.SSU3;7条LcGPPS.LSU序列,由于其与LcGPPS.SSU蛋白的互作关系未知,暂且命名为LcGGPPS1-7。萜类物质是植物重要的次生代谢物,尤其是单萜物质更是植物与环境交流的媒介,为了探寻LcGPPS.SSU及其可能的搭档在山鸡椒体内的作用,利用荧光定量PCR,对LcGPPS.SSUsLcGGPPSs在山鸡椒果实发育过程和不同组织中的表达模式进行了探究,结果见图 12。来自LcGPPS.SSUs家族的3个基因展现了2种表达模式,其中, LcGPPS.SSU2LcGPPS.SSU3具有相似的表达模式,在山鸡椒果实的发育过程中,不仅在前中期呈现了一个表达高峰,而且在果实发育后期表达量又有提升,而且两基因在不同组织中也表现出相似的特征,都在幼果中具有较高的表达,其次是花和花蕾,然后是叶芽和根,在茎中的表达量最少,不同的是LcGPPS.SSU2整体表达量较高,LcGPPS.SSU3在花中的特异性更加明显。LcGPPS.SSU1拥有不同的表达模式,特异性地在花、花蕾和果实中表达,而且在果实发育前中期呈现了一个显著的表达高峰,其最高表达量达到LcGPPS.SSU2的5倍,达到LcGPPS.SSU3最高表达量的40倍;所以,在LcGPPS.SSUs基因家族中,作者挑选表达量最高且特异性表达的LcGPPS.SSU1作为研究对象。

      图  1  LcGPPS.SSUsLcGGPPSs在山鸡椒果实发育过程中的表达模式

      Figure 1.  The expression patterns of LcGPPS.SSUs and LcGGPPSs in fruits maturation

      图  2  LcGPPS.SSUsLcGGPPSs在山鸡椒不同组织中的表达模式

      Figure 2.  The expression patterns of LcGPPS.SSUs and LcGGPPSs in different tissues in L. cubeba

      来自LcGGPPSs家族的7条基因表达模式各不相同,在山鸡椒果实发育过程中,LcGGPPS2LcGGPPS4LcGGPPS5在前中期出现了表达高峰,LcGGPPS3LcGGPPS7的表达高峰则出现在果实发育后期,而LcGGPPS1在前中期和后期都出现了表达高峰,LcGGPPS6在过程中无明显规律。在不同组织中的表达显示,LcGGPPS3-7虽然表达量各不相同,但在花和花蕾中的表达量都显著高于其它组织,LcGGPPS1除了在茎中表达量较低外,在其它组织中的表达量相差不大,LcGGPPS2则显示了在果实、根、花和花蕾中的特异性,说明在LcGGPPSs家族中,LcGGPPS1参与较多组织中萜类物质的生成,LcGGPPS2主要在果实、根与花中发挥作用,而LcGGPPS3-7主要在花发育过程中参与萜类物质的合成,在其它部位作用较少。作者挑选分别代表 2种表达模式的LcGGPPS1LcGGPPS3,探究可能与LcGPPS.SSU1的大亚基搭档。

    • 利用PCR对LcGPPS.SSU1LcGGPPS1LcGGPPS3进行扩增,PCR产物经过1% 的琼脂糖电泳之后,分别检测到3条不同大小的条带(图 3),序列测序结果与转录组电子序列一致。在NCBI中BLASTP结果显示,LcGPPS.SSU1与来自芍药(Paeonia lactiflora,AKJ26303)的GPPS.SSU具有50%的相似性,LcGGPPS1和LcGGPPS3分别与来自欧洲榛(Corylus avellana,ABW06960.1)和葡萄(Vitis vinifera,XP_002273789.1)的GGPPS展现73%与60%的相似性。分别将以上3条基因提交至NCBI数据库。登录号与所用引物见表 2

      图  3  LcGPPS.SSU1LcGGPPS1LcGGPPS3家族基因ORF扩增产物

      Figure 3.  The PCR amplification product of ORF of LcGPPS.SSU1LcGGPPS1 and LcGGPPS3

    • 在单萜的合成过程中,异质二聚体GPPS起着显著的作用,在金鱼草和啤酒花里,GPPS.SSU的表达量与单萜的释放紧密相关[6, 10],异质二聚体结构里的大亚基通常由特定的LSU或者一些GGPPS蛋白来扮演,但并不是所有的GGPPS都能充当大亚基[7]。目前,LSU与GGPPS的界定只能通过催化活性的有无及能否与GPPS.SSU互作来鉴别,通过氨基酸序列以及三维结构上关键位点来判别,目前只在少数物种中实现,尚未在大多数物种中得到验证。作者利用三维结构预测和酵母双杂互作验证对山鸡椒LcGGPPS1和LcGGPPS3能否与LcGPPS.SSU1互作进行了探索。

    • 以薄荷异质GPPS晶体结构(PDB entry: 3KRO)为参照,作者利用I-TASSER v4.3对LcGPPS.SSU1分别与LcGGPPS1和LcGGPPS3的晶体互作结构进行了互作预测。LcGGPPS1/3与LcGPPS.SSU1的三维模型主要由α-螺旋组成,以无规则卷曲和转角等连接,LcGGPPS1/3与LcGPPS.SSU1能分别覆盖到薄荷异质二聚体大小亚基的三维结构上,也就是说晶体结构预测LcGGPPS1与LcGGPPS3都能与LcGPPS.SSU1互作,构成异质二聚体GPPS,由于LcGGPPS1与LcGGPPS3的结构相似,图 4中以LcGGPPS1与LcGPPS.SSU1的互作结构为例。

      图  4  LcGPPS.SSU1(红色)与LcGGPPS1 (橙色)的二聚体结构

      Figure 4.  Dimeric structures of LcGPPS.SSU1(red) and LcGGPPS1(orange)

    • Y2HGold-pGBKT7-SU1在SD/-Trp、SD/-Trp/X、SD/-Trp/X/A固体培养基上的观察结果(图 5)显示:该菌株没有自激活,没有毒性,说明pGBKT7-SU1可以作为诱饵蛋白用于互作验证。pGBKT7原型质粒与pGADT7-L1共转化Y2HGold,在DDO/X、DDO/X /A、QDO/X/A上的培养结果显示:pGADT7-L1质粒没有发生自激活,没有产生假阳性。pGBKT7原型质粒与pGADT7-L3的共转化培养结果显示:pGADT7-L3也没有发生自激活和假阳性。

      图  5  诱饵质粒自激活验证及捕获质粒假阳性验证

      Figure 5.  Verification of Y2HGold-pGBKT7-SU1 for autoactivation and toxicity and false positive for pGADT7-L1 and pGADT7-L3

    • 以共转化pGBKT7-53质粒和pGADT7-T到Y2HGold菌株作阳性对照,共转化pGBKT7-Lam质粒和pGADT7-T到Y2HGold菌株中做阴性对照,将pGBKT7-SU1和pGADT7-L1共转化Y2HGold。培养结果(图 6)显示:在DDO/X平板上出现明显蓝色菌落,说明编码a半乳糖苷酶的MEL1报告基因已被激活,其分泌的a半乳糖苷酶能与培养基中的X-a-gal相互作用而使菌落呈现明显的蓝色,但是在DDO/ X /A和QDO/X/A平板上并没有长出菌落,说明二者表达的蛋白之间没有互作,转化菌株没有获得AbA抗性。pGBKT7-SU1与pGADT7-L3共转化Y2HGold,培养结果(图 6)显示:在3种平板上都长有菌落,但与阳性克隆在相同平板上的表现相比,长出的菌落较少且着色较浅,说明pGBKT7-SU1与pGADT7-L3质粒表达的蛋白虽然存在互作,但作用强度较弱。

      图  6  LcGPPS.SSU1分别和LcGGPPS1与LcGGPPS3的蛋白互作验证以及阴性和阳性对照

      Figure 6.  Verifying of the proteins interactions between LcGPPS. SSU1and LcGGPPS1/3 and negative and positive control

    • 编码GPPS和GGPPS关键酶的基因已经从数十种植物中分离出来,利用邻接法(NJ),对山鸡椒LcGPPS.SSU1和LcGGPPSs及一些植物GPPS/GGPPS蛋白进行系统进化分析。图 7表明:43条蛋白序列清楚地分成3类(图中所包含的序列及登录号见表 3),其中:SSUII与GGPPS聚成一大类,说明SSUII与GGPPS的相似性更高;SSUI单独聚成一小类,LcGPPS.SSU1聚类到SSUI里,同在这一类的多来自芳香植物,其中包含来自丹参(Salvia miltiorrhiza Bge.)的SmGPPS.SSUI, LcGPPS.SSU1的表达模式也与SSUI的特征相同,主要表达在单萜的储藏与释放器官[6, 9]。在SSUII分类中,包含拟南芥的AtSSU(即AtGGPPS12)和来自丹参的SmGPPS.SSUII1和SmGPPS.SSUII2,说明一个物种中可能同时含有两类GPPS.SSU,其分类可能与功能的分化有关,而不是之前报道的根据物种分类。在GGPPS这一类中,可以看到主要包括两大类,分别由来自被子植物和裸子植物的GGPPS蛋白组成,其中, 裸子植物分类中含有2条来自被子植物的蛋白序列,分别是丹参和麻风树(Jatropha curcas L.);在被子植物分类中,又分出若干小的类别,而已克隆并鉴定活性的4条LSU序列聚成一个小类,说明LSU起源于GGPPS,并且已经进化出了特定的功能,与其它的GGPPS亲缘关系较远,LcGGPPS3不仅没有聚到LSU分类中,还与SmGGPPS3一起聚类到裸子植物与被子植物的GGPPS之外,说明其与大多数的GGPPS蛋白亲缘关系较远,其起源可能要早于裸子植物与被子植物的分化。

      图  7  山鸡椒与其它物种GPPS/GGPPS系统进化分析

      Figure 7.  Phylogenetic relationship between L. cubeba and other plants GPPS/GGPPS families

      表 3  进化树中所有序列物种来源及登录号

      Table 3.  the species of sequences included in the tree and their accession number in NCBI

      序号
      No.
      缩写
      Abbreviation
      in the tree
      物种
      Species
      登录号
      Accession
      number
      序号
      No.
      缩写
      Abbreviation
      in the tree
      物种
      Species
      登录号
      Accession
      number
      1 EuGGPPS Elaeagnus umbellata ACO59905 21 LiSSU Lavandula intermedia AGH33891.1
      2 TkGGPPS Taraxacum kok-saghyz ALJ30146.1 22 AtSSU Arabidopsis thaliana AAG40013.1
      3 PbGGPPS Plectranthus barbatus ALE19959.1 23 GmSSU Glycine max NP_001238613.1
      4 PmGGPPS Pinus massoniana AGU43761.1 24 MsSSU Medicago sativa AEL29573.1
      5 JcGGPPS Jatropha curcas NP_001295715.1 25 VvSSU Vitis vinifera XP_002278023
      6 CaGGPPS Corylus avellana ABW06960.1 26 OsSSU Oryza sativa EAY87007.1
      7 TcGGPPS Taxus canadensis AAD16018.1 27 HbSSU Hevea brasiliensis BAF98300
      8 MtGGPPS Medicago truncatula XP_003629488.1 28 AgGPPS2 Abies grandis AAN01134.1
      9 MsGGPPS Medicago sativa ADG01841 29 AgGPPS1 Abies grandis AAN01133.1
      10 GbGGPPS Ginkgo biloba AAQ72786.1 30 AgGPPS3 Abies grandis AAN01135.1
      11 NaGGPPS Nicotiana attenuata ABQ53935.1 31 SmGPPS.SSUI Salvia miltiorrhiza JN831108
      12 CrGPPS.LSU Catharanthus roseus AGL91645.1 32 SmGPPS.SSUII.1 Salvia miltiorrhiza JN831109
      13 MpGPPS.LSU Mentha piperita AAF08793.1 33 SmGPPS.SSUII.2 Salvia miltiorrhiza JN831110
      14 AmGPPS.LSU Antirrhinum majus AAS82860.1 34 SmGGPPS1 Salvia miltiorrhiza FJ643617
      15 SmGPPS.LSU Salvia miltiorrhiza AEZ55681.1 35 SmGGPPS2 Salvia miltiorrhiza JN831112
      16 MpSSU Mentha x piperita AAF08792.1 36 SmGGPPS3 Salvia miltiorrhiza JN831113
      17 HlSSU Humulus lupulus ACQ90681.1 37 AtGGPPS2 Arabidopsis thaliana NM_127943.2
      18 LcSSU Leucosceptrum canum ALT07956.1 38 AtGGPPS11 Arabidopsis thaliana NM_113869.1
      19 CbSSU Clarkia breweri AAS82870.1 39 CsGGPPS Croton sublyratus BAA86284.1
      20 AmSSU Antirrhinum majus AAS82859.1 40 AgGGPPS Abies grandis AAL17614.2
    • 根据文献报道,Chang等[7]为验证异质MpGPPS的催化活性,在底物结合与催化区域挑选3个氨基酸残基,构建了[LSU(D83A/D84A/D89A)·SSU]2突变体,发现突变体完全没有活性,证实异质GPPS的催化活性是由MpLSU大亚基行使;而通过晶体结构解析发现,MpSSU通过R loop限制住MpLSU的移动,并通过催化活性腔构象的改变影响底物的结合以及产物的变化,从而改变催化的特异性,说明异质二聚体GPPS中,LSU负责催化,SSU负责调节。在金鱼草和薄荷中,其单萜释放量与GPPS.SSU组织时空表达水平呈相关,与GPPS.LSU表达无相关性,说明SSU在单萜的合成过程中可能起关键的作用[7, 10],Orlova等[17]将本身不具有催化活性的金鱼草AmSSU在烟草中超表达,结果也获得了单萜释放量增加,提示外源AmSSU可以与系统进化上较远的烟草GGPPS互作,并改变了其催化特异性,调节底物转向单萜合成方向。此外,早期研究发现,茉莉酸甲酯处理能够通过刺激转录因子进而调控萜类积累相关的酶基因的表达[18]。Avanish等[9]用茉莉酸甲酯处理长春花的叶子,结果发现显著诱导了CrGGPPS.SSU的表达,说明GPPS.SSU能够通过转录因子响应外界刺激,找到能与之互作的GGPPS并改变其催化活性从而改变代谢底物转向单萜合成,生成与防御、化感以及繁殖相关的单萜物质。

      系统进化分析结果显示,GPPS.LSU起源于GGPPS,已经与GGPPS蛋白展现出一定的遗传距离,聚成一个单独的类别,说明在与GPPS.SSU的互作过程中,GPPS.LSU出现了选择性进化。结合山鸡椒中3条序列的系统进化分析,LcGGPPS3不仅不属于LSU类别,且与大部分GGPPS和LSU蛋白距离较远,但LcGGPPS3能与LcGPPS.SSU1互作,说明GPPS.SSU不仅能与LSU互作,也能与部分GGPPS互作,但这部分GGPPS作者通过系统进化分析并不能辨别。

      Chang等[7]从晶体结构角度对大小亚基之间的互作进行解析,根据薄荷GPPS,(LSU·SSU)2异四聚体的晶体结构,比较来自白芥(Sinapis alba L.)同型二聚体GGPPS与MpGPPS.LSU的序列发现,在大小亚基互作界面A上存在4个氨基酸残基与二聚体形成的性质有关,在SaGGPPS结构里,这4个氨基酸通过与另一个相同亚基氨基酸之间的作用力来稳定结构,但在MpGPPS.LSU结构里,这4个氨基酸被替换,当MpGPPS.LSU形成同型二聚体时,相互之间的作用力消失或者产生相排斥的力,造成同型二聚体结构不够稳定,认为这可能是MpGPPS.LSU更倾向于形成异质二聚体而不是同型二聚体的原因,但通过对比到山鸡椒LcGGPPS3,作者发现这一规律并不完全符合,而来自金鱼草的AmGPPS.LSU不仅能与AmGPPS.SSU互作,而且单独表达时还具有GGPPS催化活性,说明GGPPS与LSU蛋白之间的界定并不是严格的非此即彼,结合Mp异四聚体的晶体结构,作者发现上面讨论的4个关键氨基酸只是位于互作界面的一条螺旋结构上,互作界面还包括另外3条螺旋结构,说明界面上还存在更多的氨基酸残基之间的作用力来维持稳定的结构。

      作者的实验结果表明,LcGPPS.SSU1LcGGPPS3二者在山鸡椒果实成熟过程中也呈现相似的表达模式,并且LcGPPS.SSU1通过与LcGGPPS3蛋白互作从而在山鸡椒精油单萜合成中发挥作用。另外,LcGGPPS3虽然能与LcGPPS.SSU1互作,但实验显示互作不是很强,提示可能还存在其它的GGPPS或特定的LSU能与LcGPPS.SSU1互作,也就是说LcGPPS.SSU1可能互作的搭档不止一个。在LcGGPPS家族中,每一条基因的表达模式都不相同,但具体分工还需要试验的进一步验证。LcGPPS.SSU1与LcGGPPS3的互作为研究山鸡椒精油中单萜合成的机制提供了基础。

    • 本研究中,分离克隆得到了LcGPPS.SSU1LcGGPPS1LcGGPPS3基因,其中LcGPPS.SSU1特异性地在山鸡椒花和果实中呈现高表达水平,在山鸡椒果实发育过程中,LcGGPPS3呈现出与LcGPPS.SSU1相似的表达趋势,酵母双杂交实验证实,LcGGPPS3可以与LcGPPS.SSU1互作,从而在山鸡椒精油单萜合成中发挥作用。

参考文献 (18)

目录

    /

    返回文章
    返回