• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种报告基因在达摩凤蝶细胞克隆株RIRI-PaDe-2-C6中的表达

刘志刚 丁伟峰 孙娜 张欣 李娴 谢世聪 冯颖

引用本文:
Citation:

两种报告基因在达摩凤蝶细胞克隆株RIRI-PaDe-2-C6中的表达

    作者简介: 刘志刚(1992-), 男, 硕士研究生, 从事昆虫细胞工程相关研究.
    通讯作者: 冯颖, rirify@139.com
  • 基金项目:

    中国林业科学研究院资源昆虫研究所中央及公益性科研院所基本科研业务费专项资金 riricaf2012003M

    中央级公益性科研院所基本科研业务费专项资助项目 CAFYBB2016ZD005

  • 中图分类号: Q965.8

Expression of Two Reporter Genes in Clonal Cell Line RIRI-PaDe-2-C6 Developed from Papilio demoleus Linnaeus (Lepidoptera: Papilionidae)

    Corresponding author: FENG Ying, rirify@139.com
  • CLC number: Q965.8

  • 摘要: 目的 前期研究中,项目组从达摩凤蝶细胞系RIRI-PaDe-2中分离培养出单细胞克隆株RIRI-PaDe-2-C6,通过感染野生型苜蓿银纹夜蛾核型多角体病毒(AcMNPV)发现克隆株RIRI-PaDe-2-C6对病毒敏感性高于原细胞系RIRI-PaDe-2。本研究将对达摩凤蝶单细胞克隆株RIRI-PaDe-2-C6的生物学特性和外源蛋白表达特性进行研究,并与原细胞系RIRI-PaDe-2进行比较,评价其用于外源蛋白表达的可行性。 方法 使用Bac-to-Bac杆状病毒表达系统构建重组β-半乳糖苷酶杆状病毒(AcMNPV-Gal)和重组分泌型碱性磷酸酶杆状病毒(AcMNPV-SEAP),分别侵染RIRI-PaDe-2和RIRI-PaDe-2-C6。在感染后的24、48、72、96、120、144、168 h检测2种重组蛋白的表达量,并对2个细胞系的形态学、生长曲线、倍增时间及核型进行分析和比较。 结果 表明:RIRI-PaDe-2和RIRI-PaDe-2-C6均可表达β-半乳糖苷酶(β-Gal)和分泌型碱性磷酸酶(SEAP),单细胞克隆株RIRI-PaDe-2-C6对重组β-Gal的表达水平显著高于原细胞系RIRI-PaDe-2(P < 0.05),在接种AcMNPV-Gal后96 h表达量达到最高。RIRI-PaDe-2-C6对重组SEAP的表达水平与RIRI-PaDe-2无显著差异(P>0.05)。显微观察发现,RIRI-PaDe-2-C6的细胞类型全部为梭形,比原细胞系RIRI-PaDe-2的细胞组成更加单一。RIRI-PaDe-2-C6的群体倍增时间为94.94 h,比原细胞系RIRI-PaDe-2的倍增时间(67.42 h)长。核型分析显示,RIRI-PaDe-2-C6的染色体数量呈正态分布,数目为21~82条,与RIRI-PaDe-2的染色体数目分布范围(48~97条)存在显著差异(P < 0.05)。 结论 通过单细胞克隆方法获得的克隆株RIRI-PaDe-2-C6无论在外源蛋白表达以及基础生物学特性方面均有别于原细胞系RIRI-PaDe-2。
  • 图 1  重组β-Gal酶活性随2个供试细胞系侵染AcMNPV-Gal后168 h内变化直方图

    Figure 1.  Histogram depicting the presence of recombinant β-Gal expressed by two insect cell lines at various time points after inoculation with AcMNPV-Gal during 168 h postinfection period

    图 2  重组SEAP酶活性随2个供试细胞系侵染AcMNPV-SEAP后168 h内变化直方图

    Figure 2.  Histogram depicting the presence of recombinant SEAP expressed by two insect cell lines at various time points after inoculation with AcMNPV-SEAP during 168 h postinfection period

    图 3  细胞系RIRI-PaDe-2(A)和克隆株细胞RIRI-PaDe-2-C6(B)的形态照片(比例尺为50 μm),以及圆形和梭形细胞在2个供试细胞系中的平均直径对比直方图(C)

    Figure 3.  Photomicrographs of cell line RIRI-PaDe-2 (A) and its cloning cell RIRI-PaDe-2-C6 (B)(The scale is 50 μm), and histogram depicting the presence of average diameters of round and spindle cells in two insect cell lines(C)

    图 4  RIRI-PaDe-C6细胞生长曲线

    Figure 4.  Growth curves of RIRI-PaDe-2-C6

    图 5  达摩凤蝶细胞系RIRI-PaDe-2(n=176)(A)及其克隆株RIRI-PaDe-2-C6(n=187) (B)染色体数目分布(n为统计的细胞数)

    Figure 5.  Chromosome number distribution in cell line RIRI-PaDe-2 (n=176) (A) and its cloning cell RIRI-PaDe-2-C6 (n=187) (B) developed from the neonate larvae of Papilio demoleus (n: sample size)

    表 1  报告基因来源

    Table 1.  Two reported gene sources

    质粒Plasmid 引物和酶切位点Primers and restriction sites
    pSV-β-Galactosidase Control Vector
    (Promega, Cat. E1081, GenBank: X65335)
    5’-GGCGAATTCGTCGTTTTACAACGTCGTGA-3’
    5’-GACAAGCTTATTTTTGACACCAGACCA-3’
    (EcoRI)
    (HindⅢ)
    pSEAP2-Control Vector
    (Clontech, Cat. 631717, GenBank: U89938)
    5’-ATGCTGCTGCTGCTGCTGCT-3’
    5’-GGATCCTGTCTGCTCGAAGCGGCCGG-3’
    (BamHⅠ)
    下载: 导出CSV
  • [1]

    Hu Y C. Baculovirus as a highly efficient expression vector in insect and mammalian cells[J]. Acta Pharmacologica Sinica, 2005, 26(4):405-416. doi: 10.1111/aphs.2005.26.issue-4
    [2]

    Sokolenko S, George S, Wagner A, et al. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture:Benefits and drawbacks[J]. Biotechnology Advances, 2012, 30(3):766-781. doi: 10.1016/j.biotechadv.2012.01.009
    [3]

    Ikonomou L, Schneider Y J, Agathos S N. Insect cell culture for industrial production of recombinant proteins[J]. Applied Microbiology and Biotechnology, 2003, 62(1):1-20.
    [4]

    Swiech K, Picanço-Castro V, Covas D T. Human cells:new platform for recombinant the rapeutic protein production[J]. Protein Expression and Purification, 2012, 84(1):147-153. doi: 10.1016/j.pep.2012.04.023
    [5]

    van Oers M M, Pijlman G P, Vlak J M. Thirty years of baculovirus-insect cell protein expression:from dark horse to mainstream technology[J]. The Journal of General Virology, 2015, 96(Pt 1):6-23.
    [6]

    Vaughn J, Goodwin R, Tompkins G, et al. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae)[J]. In Vitro Cellular & Developmental Biology. Animal, 1977, 13(4):213-217.
    [7]

    Smith G, Summers M, Fraser M J. Production of human beta interferon in insect cells infected with a baculovirus expression vector[J]. Molecular and Cellular Biology, 1983, 3(12):2156-2165. doi: 10.1128/MCB.3.12.2156
    [8]

    Hink W F. Established insect cell line from the Cabbage Looper, Trichoplusia ni[J]. Nature, 1970, 226(5244):466-467.
    [9]

    Granados R R, Guoxun L, Anja C G D, et al. A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus[J]. Journal of Invertebrate Pathology, 1994, 64(3):260-266. doi: 10.1016/S0022-2011(94)90400-6
    [10]

    Contreras-Gomez A, Sanchez-Miron A, Garcia-Camacho F, et al. Protein production using the baculovirus-insect cell expression system[J]. Biotechnology Progress, 2014, 30(1):1-18.
    [11]

    Donaldson M S, Shuler M L. Effects of long-term passaging of BTI-Tn5B1-4 insect cells on growth and recombinant protein production[J]. Biotechnology Progress, 1998, 14(4):543-547. doi: 10.1021/bp9800485
    [12]

    Léry X, Charpentier G, Belloncik S. DNA content analysis of insect cell lines by flow cytometry[J]. Cytotechnology, 1999, 29(2):103-113. doi: 10.1023/A:1008092620572
    [13] 丁伟峰, 冯颖, 张欣, 等.四个达摩凤蝶新孵幼虫细胞系的建立及其生物学特性[J].昆虫学报, 2015, 58(8):826-835.

    [14]

    Zhang X, Feng Y, Ding W F, et al. Establishment and characterization of an embryonic cell line from Gampsocleis gratiosa (Orthoptera:Tettigoniidae)[J]. In Vitro Cellular & Developmental Biology Animal, 2011, 47(4):327-332.
    [15]

    Zhang X, Feng Y, Ding W F, et al. Characterization of a new insect cell line that is derived from the neonate larvae of Papilio xuthus (Lepidoptera:Papilionidae) and its susceptibility to AcNPV[J]. Tissue and Cell, 2012, 44(3):137-142. doi: 10.1016/j.tice.2011.11.007
    [16] 刘冰洁, 李小平, 赵丽君, 等.人子宫内膜癌耐醋酸甲羟孕酮细胞株的建立[J].中国妇产科临床杂志, 2014, 15(4):341-344.

    [17]

    Mitsuhashi J. Karyotype Analysis[M]//Invertebrate Tissue Culture Methods. Tokyo:Springer Japan, 2002:321-323.
    [18]

    Yeh S, Lee S, Wu C, et al. A cell line (NTU-MV) established from Maruca vitrata (Lepidoptera:Pyralidae):Characterization, viral susceptibility, and polyhedra production[J]. Journal of Invertebrate Pathology, 2007, 96(2):138-146. doi: 10.1016/j.jip.2007.04.004
    [19]

    Shi X, Jarvis D L. Protein N-glycosylation in the baculovirus-insect cell system[J]. Current Drug Targets, 2007, 8(10):1116-1125. doi: 10.2174/138945007782151360
    [20]

    Tomiya N, Narang S, Lee Y C, et al. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines[J]. Glycoconjugate Journal, 2004, 21(6):343-360. doi: 10.1023/B:GLYC.0000046275.28315.87
    [21]

    Palomares L A, Joosten C E, Hughes P R, et al. Novel insect cell line capable of complex N-Glycosylation and sialylation of recombinant proteins[J]. Biotechnology Progress, 2003, 19(1):185-192. doi: 10.1021/bp025598o
    [22] 刘丽华.杆状病毒宿主域的研究进展[J].中国蚕业, 2006, 27(2):95-98. doi: 10.3969/j.issn.1007-0982.2006.02.043

    [23]

    Zhang L, Wu G, Tate C G, et al. Calreticulin promotes folding/dimerization of human lipoprotein lipase expressed in insect cells (Sf21)[J]. Journal of Biological Chemistry, 2003, 278(31):29344-29351. doi: 10.1074/jbc.M300455200
    [24]

    Fourneau J, Cohen H, van Endert P M. A chaperone-assisted high yield system for the production of HLA-DR4 tetramers in insect cells[J]. Journal of Immunological Methods, 2004, 285(2):253-264. doi: 10.1016/j.jim.2003.11.011
    [25]

    Kost T A, Condreay J P, Jarvis D L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells[J]. Nature Biotechnology, 2005, 23(5):567-575. doi: 10.1038/nbt1095
    [26]

    Ho Y, Lo H R, Lee T C, et al. Enhancement of correct protein folding in vivo by a non-lytic baculovirus[J]. Biochemical Journal, 2004, 382(Pt 2):695-702.
  • [1] 宋德伟马艳冯颖陈晓鸣 . 昆虫细胞工程研究进展. 林业科学研究, 2004, 17(1): 116-124.
    [2] 张欣冯颖丁伟峰马涛 . 离体昆虫细胞对AcNPV和BmNPV的敏感性测定与分析. 林业科学研究, 2011, 24(3): 321-326.
    [3] 张欣冯颖马涛马艳丁伟峰 . 五种双翅目昆虫细胞系染色体分析. 林业科学研究, 2007, 20(4): 551-555.
    [4] 张欣冯颖丁伟峰马涛马艳 . 7种鳞翅目昆虫细胞系染色体分析. 林业科学研究, 2008, 21(4): 493-499.
    [5] 丁伟峰马艳冯颖张欣马涛 . 长期冻存对昆虫细胞系SL2和NIH-SaPe-4活性的影响. 林业科学研究, 2010, 23(5): 666-670.
    [6] 张婷丁贵杰文晓鹏 . 马尾松紫色酸性磷酸酶基因PmPAP1的克隆与表达模式分析. 林业科学研究, 2016, 29(6): 797-806.
    [7] 王敬文蒋晶 . 黑荆树悬浮单细胞低温驯化*. 林业科学研究, 1989, 2(5): 442-446.
    [8] 亓倩于淑惠孙涛王雪庆刘博文杨璞陈晓鸣 . 白蜡虫蜡酯合酶在昆虫细胞Sf9中的表达. 林业科学研究, 2016, 29(2): 191-195.
    [9] 诸葛强阙国宁 . 杉木悬浮细胞系的建立和原生质体的分离*. 林业科学研究, 1992, 5(6): 628-632.
    [10] 张守英阙国宁 . 晚松悬浮细胞系的建立和原生质体的分离. 林业科学研究, 2002, 15(2): 247-251.
    [11] 倪建伟魏琦杨秀艳许秀玉武海雯张华新刘涛 . 野生唐古特白刺悬浮细胞系的建立及生长特性. 林业科学研究, 2015, 28(1): 74-80.
    [12] 张绮纹张望东 . 群众杨39无性系耐盐悬浮细胞系的建立和体细胞变异体完整植株的诱导*. 林业科学研究, 1995, 8(4): 395-400.
    [13] 张清国梁国鲁韩素英胡钠梅齐力旺 . 落叶松胚性细胞系分化能力及染色体变异的研究. 林业科学研究, 2010, 23(6): 877-882.
    [14] 陈竣李传涵 . 杉木幼林根圈土壤磷酸酶活性、磷组分及其相互关系. 林业科学研究, 1997, 10(5): 458-463.
    [15] 丁伟峰冯颖张欣李娴 . 密度对黑腹果蝇胚细胞系L-2/M delta 2-3 冻存效果的影响. 林业科学研究, 2012, 25(1): 6-10.
    [16] 丁伟峰冯颖马艳张欣马涛 . 昆虫细胞库管理系统的设计与实现. 林业科学研究, 2008, 21(3): 325-330.
    [17] . 松材线虫与拟松材线虫分泌的纤维素酶系研究. 林业科学研究, 2009, 22(3): -.
    [18] 李龙张立峰齐力旺韩素英 . 日本落叶松体细胞胚胎发生相关基因LaSERK1的克隆与表达分析. 林业科学研究, 2013, 26(6): 673-680.
    [19] 范正琪李纪元田 敏李辛雷陈东亮卢孟柱 . 麻疯树磷酸烯酮式丙酮酸羧化酶em>pepc基因全长cDNA克隆及序列分析. 林业科学研究, 2010, 23(3): 349-354.
    [20] 刘攀峰杜红岩乌云塔娜黄海燕朱高浦 . 杜仲1-脱氧-D-木酮糖-5-磷酸还原异构酶基因cDNA全长克隆与序列分析. 林业科学研究, 2012, 25(2): 195-200.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4246
  • HTML全文浏览量:  1549
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-27
  • 刊出日期:  2018-08-01

两种报告基因在达摩凤蝶细胞克隆株RIRI-PaDe-2-C6中的表达

    通讯作者: 冯颖, rirify@139.com
    作者简介: 刘志刚(1992-), 男, 硕士研究生, 从事昆虫细胞工程相关研究
  • 中国林业科学研究院资源昆虫研究所, 国家林业局资源昆虫培育与利用重点实验室, 云南 昆明 650224
基金项目:  中国林业科学研究院资源昆虫研究所中央及公益性科研院所基本科研业务费专项资金 riricaf2012003M中央级公益性科研院所基本科研业务费专项资助项目 CAFYBB2016ZD005

摘要:  目的 前期研究中,项目组从达摩凤蝶细胞系RIRI-PaDe-2中分离培养出单细胞克隆株RIRI-PaDe-2-C6,通过感染野生型苜蓿银纹夜蛾核型多角体病毒(AcMNPV)发现克隆株RIRI-PaDe-2-C6对病毒敏感性高于原细胞系RIRI-PaDe-2。本研究将对达摩凤蝶单细胞克隆株RIRI-PaDe-2-C6的生物学特性和外源蛋白表达特性进行研究,并与原细胞系RIRI-PaDe-2进行比较,评价其用于外源蛋白表达的可行性。 方法 使用Bac-to-Bac杆状病毒表达系统构建重组β-半乳糖苷酶杆状病毒(AcMNPV-Gal)和重组分泌型碱性磷酸酶杆状病毒(AcMNPV-SEAP),分别侵染RIRI-PaDe-2和RIRI-PaDe-2-C6。在感染后的24、48、72、96、120、144、168 h检测2种重组蛋白的表达量,并对2个细胞系的形态学、生长曲线、倍增时间及核型进行分析和比较。 结果 表明:RIRI-PaDe-2和RIRI-PaDe-2-C6均可表达β-半乳糖苷酶(β-Gal)和分泌型碱性磷酸酶(SEAP),单细胞克隆株RIRI-PaDe-2-C6对重组β-Gal的表达水平显著高于原细胞系RIRI-PaDe-2(P < 0.05),在接种AcMNPV-Gal后96 h表达量达到最高。RIRI-PaDe-2-C6对重组SEAP的表达水平与RIRI-PaDe-2无显著差异(P>0.05)。显微观察发现,RIRI-PaDe-2-C6的细胞类型全部为梭形,比原细胞系RIRI-PaDe-2的细胞组成更加单一。RIRI-PaDe-2-C6的群体倍增时间为94.94 h,比原细胞系RIRI-PaDe-2的倍增时间(67.42 h)长。核型分析显示,RIRI-PaDe-2-C6的染色体数量呈正态分布,数目为21~82条,与RIRI-PaDe-2的染色体数目分布范围(48~97条)存在显著差异(P < 0.05)。 结论 通过单细胞克隆方法获得的克隆株RIRI-PaDe-2-C6无论在外源蛋白表达以及基础生物学特性方面均有别于原细胞系RIRI-PaDe-2。

English Abstract

  • 昆虫细胞-杆状病毒表达系统(Insect Cell-Baculovirus Expression Victor System,IC-BEVS)是近年来发展迅速的真核细胞表达系统,具有完备的翻译后加工修饰能力、生物安全性高、对外源基因容量大的特点,能够高效表达外源基因[1-2]。在基因工程、蛋白工程、工程疫苗、药物研究和开发、生物农药等领域具有重要的应用价值[3-4]。据统计,已有上千种外源基因在IC-BEVS中得到了成功表达,且有95%的外源重组蛋白能够被正确的转译、加工以及修饰成具有生物活性的产物[5]。IC-BEVS常用的宿主细胞来自鳞翅目和双翅目昆虫细胞系,特别是来源鳞翅目蛾类的昆虫细胞系,如草地夜蛾(Spodoptera frugiperda)细胞系Sf21[6]及其克隆细胞株Sf9[7],粉纹夜蛾(Trichoplusia ni)细胞系Tn5[8]及其高产克隆株High Five[9],被广泛用于IC-BEVS[10];但目前用于外源蛋白表达的昆虫细胞株数量有限,且随着这些细胞系传代次数的增加,细胞开始出现一些退化,如外源蛋白产量减少,细胞增殖速率降低等[11-12]。因此,建立和筛选具有高效表达外源基因潜力的新细胞系具有重要的意义。

    前期研究中,项目组建立了4个来源于鳞翅目凤蝶科达摩凤蝶(Papilio demoleus)新孵幼虫的细胞系(RIRI-PaDe-1、RIRI-PaDe-2、RIRI-PaDe-3、RIRI-PaDe-4)[13]。观察发现,这4个细胞系均为贴壁细胞,其细胞组成、形态大小都存在不同程度的差异。使用野生型苜蓿银纹夜蛾核型多角体病毒(Autographa californica multiple nucleopolyhedrosis virus, AcMNPV)侵染4个细胞系发现均能表现出病理学特征,且不同个体对AcMNPV的敏感性不同,如有的细胞受病毒侵染后能够产生大量包涵体(occlusion bodies, OBs),但有的细胞个体却没有明显病变特征。笔者使用半固体培养法结合显微操作系统对这4个细胞系进行了单细胞克隆操作,共获得61个单细胞克隆株,使用AcMNPV侵染这些克隆株并统计细胞产生OBs数量,发现其中1个克隆株RIRI-PaDe-2-C6平均每个细胞产生的OBs数量较原细胞系RIRI-PaDe-2有显著增高。AcMNPV具有较广的宿主范围,常作为外源基因的载体在蛾类昆虫细胞中表达外源蛋白,为研究以AcMNPV为载体的重组病毒能否在达摩凤蝶细胞系中的表达,在本研究中,笔者利用Bac-to-Bac表达系统分别构建了携带β-半乳糖苷酶(β-galactosidase, β-Gal)和分泌型碱性磷酸酶(secreted alkaline phosphatase, SEAP)基因的2个重组杆状病毒(AcMNPV-Gal和AcMNPV-SEAP),这2种基因是常用的报告基因,其检测手段较为成熟。用这2种重组病毒侵染RIRI-PaDe-2细胞系和克隆株RIRI-PaDe-2-C6,检测宿主细胞对这2个报告基因的表达水平;同时对RIRI-PaDe-2-C6的细胞形态、倍增时间、染色体数目等基础生物学特性进行研究,为后续利用提供依据。

    • 达摩凤蝶细胞系RIRI-PaDe-2及其单细胞克隆株RIRI-PaDe-2-C6由中国林业科学研究院资源昆虫研究所建立并保存。培养基为Zhang等[14]根据经典Grace昆虫培养基培养经过改良获得的Grace+培养基[14-15],培养时添加20%的HyClone胎牛血清(货号SV30087.02)以促进细胞生长。培养条件为27℃避光恒温培养。

    • 外源基因分别来自表 1所列的2个商业质粒产品,通过PCR扩增获得目的片段并添加酶切位点。使用赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)的Bac-to-Bac杆状病毒表达系统(货号10359-016)构建重组杆状病毒AcMNPV-Gal和AcMNPV-SEAP,并取P2代病毒贮备液用于试验。

      表 1  报告基因来源

      Table 1.  Two reported gene sources

      质粒Plasmid 引物和酶切位点Primers and restriction sites
      pSV-β-Galactosidase Control Vector
      (Promega, Cat. E1081, GenBank: X65335)
      5’-GGCGAATTCGTCGTTTTACAACGTCGTGA-3’
      5’-GACAAGCTTATTTTTGACACCAGACCA-3’
      (EcoRI)
      (HindⅢ)
      pSEAP2-Control Vector
      (Clontech, Cat. 631717, GenBank: U89938)
      5’-ATGCTGCTGCTGCTGCTGCT-3’
      5’-GGATCCTGTCTGCTCGAAGCGGCCGG-3’
      (BamHⅠ)
    • 取指数生长期的供试细胞,密度稀释至1×105个·mL-1,接种于24孔细胞培养板(Corning,货号3524),每孔1 mL细胞悬液。每个细胞系接种4孔,其中,3孔作为平行对照,1孔作为阴性对照。使用Clontech Laboratories公司的BacPAK杆状病毒快速滴度检测试剂盒(货号631406)测定病毒滴度,稀释病毒液,使每个细胞感染的病毒数达到5(MOI=5)。培养板置于摇床(杭州米欧仪器有限公司,型号GS-20)避光轻摇2 h,使细胞充分吸收病毒;之后小心将每孔中培养基全部吸出,注意避免吸起细胞。然后在每孔中补加2 mL不含病毒的新鲜培养基,置于27℃恒温避光培养。

    • 接种重组病毒后24 h进行第1次检测,之后每隔24 h检测1次,共检测7次。取接种重组病毒的24孔细胞培养板置于摇板机(DragonLab,型号MX-M)上轻摇15 min,使细胞分泌的重组蛋白均匀分散到细胞液中。每孔取30 μL细胞上清液作为待测样品,并向原孔补加30 μL新鲜培养基,使每孔培养液总体积保持不变。使用β-半乳糖苷酶检测试剂盒((Promega,货号E2000)测定样品中β-Gal的酶活性。使用Phospha-Light试剂盒(Applied Biosystems,货号T1017)检测样品中SEAP的酶活性。检测使用的多功能酶标仪型号是赛默飞世尔科技有限公司的Varioskan Flash。

    • 每个细胞系3个平行对照与1个空白对照的酶活性记为S1、S2、S3以及C,计算S1-C、S2-C以及S3-C的平均值(Mean±Std.)作为重组蛋白在待测细胞中的表达量。使用Excel(Ver. 1710)以病毒侵染时间为横坐标,重组蛋白酶活性为纵坐标绘制直方图。使用SPSS(Ver. 19)对供试细胞系表达的酶活性进行t检验,确定它们对重组蛋白的表达水平是否存在显著差异(P<0.05)。

    • 使用Olympus Ⅸ71倒置生物显微镜进行观察并拍照,使用Adobe Photoshop CS6 Extended中的“计数工具”分别对每张照片中不同形态的细胞(分为圆形、梭形及多边形)进行计数统计,计算各细胞系不同形态细胞所占比例的平均值和标准差。使用Olympus CellSens图像分析软件对细胞系中圆形细胞的直径进行测量(梭形细胞计算长轴),每个细胞类型统计的样本数(n)不少于100个细胞,并计算其平均值和标准差。

    • 取指数生长期的供试细胞,密度稀释至2×105个·mL-1,接种于96孔细胞培养板(Corning,货号3997),每孔100 μL细胞悬液。每个细胞系接种4孔,作为平行对照,共接种7板,置于27℃恒温避光培养。每隔24 h取1板进行细胞活力检测。使用普洛麦格生物产品有限公司的Cell Titer 96 Aqueous单溶液细胞增殖检测试剂盒(货号G3582)进行细胞活力检测,连续检测7天。使用Excel(Ver. 1710)以检测时间作为横坐标,活细胞吸光度值作为纵坐标绘制细胞密度随培养时间变化的生长曲线图,根据曲线走势确定细胞进入指数生长期阶段,再根据刘冰洁等[16]所述公式计算细胞群体倍增时间。

    • 取指数生长期的供试细胞,根据Mitsuhashi[17]所述方法进行细胞固定制片,其中,低渗溶液KCl的浓度为0.6%。使用Nikon ECLIPSE E800生物显微镜进行观察并拍照,挑选染色体清晰且分散比较好的细胞样本进行染色体计数(样本数≥100),根据Yeh等[18]所述方法进行统计分析。使用Photoshop(Ver. 13.0.1)中的“计数工具”对各细胞系的染色体条数进行统计,每个细胞系统计的样本数(n)不少于100个细胞。使用SPSS(Ver. 19)对供试细胞系染色数量进行频数分析并绘制直方图以及正态曲线。使用SPSS(Ver. 19)对供试细胞系染色体数量进行t检验,确定它们是否存在显著差异(P<0.05)。

    • 由试验结果可以看出,RIRI-PaDe-2和RIRI-PaDe-2-C6均检测到重组β-Gal和SEAP酶活性(图 12),表明2种重组蛋白基因在RIRI-PaDe-2和RIRI-PaDe-2-C6细胞中得到了表达。从图 1所列重组β-Gal酶活性变化情况可见,克隆株RIRI-PaDe-2-C6在7个时间点表达的重组蛋白酶活性较原细胞系RIRI-PaDe-2都高接近1倍。在侵染AcMNPV-Gal后的96 h供试细胞系及其克隆株对重组β-Gal的表达量均达最高,此时对供试2个细胞系/株进行独立样本t检验(Independent-Sample T Test),结果显示:Levene方差齐性检验F=1.928,P=0.259>0.05,认为2组方差相等,t=3.682,df=3,P=0.035<0.05,说明克隆株RIRI-PaDe-2-C6对重组β-Gal的表达水平显著高于原细胞系RIRI-PaDe-2,之后表达量呈缓慢降低的趋势。

      图  1  重组β-Gal酶活性随2个供试细胞系侵染AcMNPV-Gal后168 h内变化直方图

      Figure 1.  Histogram depicting the presence of recombinant β-Gal expressed by two insect cell lines at various time points after inoculation with AcMNPV-Gal during 168 h postinfection period

      图  2  重组SEAP酶活性随2个供试细胞系侵染AcMNPV-SEAP后168 h内变化直方图

      Figure 2.  Histogram depicting the presence of recombinant SEAP expressed by two insect cell lines at various time points after inoculation with AcMNPV-SEAP during 168 h postinfection period

      图 2所列重组SEAP酶活性变化情况可见,RIRI-PaDe-2对重组SEAP的表达量随AcMNPV-SEAP侵染时间增长而逐渐提高,到96 h达到最大表达量,随后逐渐降低。克隆株RIRI-PaDe-2-C6对重组SEAP的表达量在侵染病毒后的168 h中均呈逐渐增加的趋势。虽然在24、48、72、96 h检测重组SEAP酶活性较RIRI-PaDe-2的低,但之后的120、144、168 h克隆株RIRI-PaDe-2-C6对重组SEAP的表达水平高于原细胞系RIRI-PaDe-2。对供试细胞系和克隆株的表达最高酶活性进行独立样本t检验,结果显示:Levene方差齐性检验F=0.061,P=0.821>0.05,认为2组方差相等,t=-0.766,df=3,P=0.499>0.05,表明克隆株RIRI-PaDe-2-C6对重组SEAP的表达水平与原细胞系RIRI-PaDe-2接近。

    • RIRI-PaDe-2的细胞类型组成为圆形和梭形(图 3A),其中,圆形细胞所占比例最大,约占(83.87±4.07)%(平均值±标准差,下同),直径从11.43~26.99 μm不等(样本n=101个细胞);其次是梭形占(16.13±4.07)%,长度从20.41~62.09 μm不等(n=100),平均长度为(31.58±7.48) μm。克隆株RIRI-PaDe-2-C6全部为梭形细胞(图 3B),长度从16.06~45.29 μm不等(n=103),平均长度为(27.83±5.53) μm(图 3C)。比较2个细胞系的形态学特征发现,克隆株RIRI-PaDe-2-C6的细胞类型组成较原细胞系RIRI-PaDe-2简单,细胞的长度分布范围较原细胞系中的梭形细胞窄,且细胞平均长度小于原细胞系。

      图  3  细胞系RIRI-PaDe-2(A)和克隆株细胞RIRI-PaDe-2-C6(B)的形态照片(比例尺为50 μm),以及圆形和梭形细胞在2个供试细胞系中的平均直径对比直方图(C)

      Figure 3.  Photomicrographs of cell line RIRI-PaDe-2 (A) and its cloning cell RIRI-PaDe-2-C6 (B)(The scale is 50 μm), and histogram depicting the presence of average diameters of round and spindle cells in two insect cell lines(C)

    • 从克隆株RIRI-PaDe-2-C6的生长曲线走势(图 4)可以辨别出:该克隆株指数生长期为细胞接种后第24 h开始一直到第144 h为止。根据公式计算RIRI-PaDe-2-C6的细胞群体倍增时间为94.94 h,较原细胞系RIRI-PaDe-2的倍增时间67.42 h长。

      图  4  RIRI-PaDe-C6细胞生长曲线

      Figure 4.  Growth curves of RIRI-PaDe-2-C6

    • 在1 000倍光学显微镜下观察发现,达摩凤蝶细胞系的染色体呈点状聚集于核区,且数量众多,无法通过染色体形态进行辨认,只能进行数量统计分析。克隆株RIRI-PaDe-2-C6及其原细胞系RIRI-PaDe-2的染色体条数分布统计结果见图 5。从图 5可以看出:2个细胞系/株染色体数量均呈正态分布,其中,克隆株RIRI-PaDe-2-C6的平均染色体数目为(52.26±30.48)条,RIRI-PaDe-2的平均染色体数目为(73.19±24.27)条,克隆株细胞染色体分布范围较原细胞系RIRI-PaDe-2窄,说明克隆株的细胞组成较原细胞系更单一。对这2个供试细胞系/株染色体数目进行独立样本t检验,结果显示:Levene方差齐性检验F=0.468,P=0.494>0.05,认为2组方差相等。t=7.207,df=361,P=0.000 < 0.05,说明细胞系RIRI-PaDe-2和它的克隆株RIRI-PaDe-2-C6的染色体数目存在显著差异。

      图  5  达摩凤蝶细胞系RIRI-PaDe-2(n=176)(A)及其克隆株RIRI-PaDe-2-C6(n=187) (B)染色体数目分布(n为统计的细胞数)

      Figure 5.  Chromosome number distribution in cell line RIRI-PaDe-2 (n=176) (A) and its cloning cell RIRI-PaDe-2-C6 (n=187) (B) developed from the neonate larvae of Papilio demoleus (n: sample size)

    • 虽然经过30年的发展,IC-BEVS的各种技术不断进步,表达了多种蛋白,表达产量也得到了提高。但也有一些因素制约了IC-BEVS的进一步发展和应用,如昆虫细胞内N端糖基化途径与哺乳动物细胞不同。昆虫细胞内缺乏哺乳动物细胞所具备的N-乙酰葡萄糖氨转移酶Ⅱ、半乳糖基转移酶/N-乙酰氨基半乳糖转移酶、α-2, 3-唾液酸转移酶和α-2, 6-唾液酸转移酶等延长N-糖链的糖基转移酶[19-20],导致表达的部分哺乳动物蛋白无活性,限制了IC-BEVS在生产药用蛋白领域的应用。Palomares等[21]对黑脉金斑蝶(Danaus plexippus)细胞系DpN1的糖基化研究发现,DpN1表达的重组蛋白糖基化程度较粉纹夜蛾(T. ni)细胞系Tn5B1-4更加完全,并认为它可以代替常见工程细胞系进行复杂糖基化蛋白的生产,因此,建立更多的蝶类细胞系和克隆株,开展外源基因在蝶类细胞中的表达特性研究很有意义。作为新建蝶类细胞系,达摩凤蝶细胞中外源蛋白的糖基化修饰水平尚未可知,本研究对达摩凤蝶细胞系RIRI-PaDe-2及其克隆株RIRI-PaDe-2-C6的外源蛋白表达特性进行研究,希望获得外源基因表达水平高的细胞系,为下一步达摩凤蝶细胞系的糖基化研究奠定基础。

      从结果可以看出:通过单细胞克隆技术确实能够获得较原细胞系RIRI-PaDe-2表达水平更高的克隆株RIRI-PaDe-2-C6,但与IC-BEVS常用的宿主细胞系Sf 9相比其表达水平仍较低。相同试验条件下Sf 9表达重组β-Gal和SEAP的最高酶活性分别为(4.132±0.942) U·mL-1和(4.196±0.923)×10-2 U·mL-1,较RIRI-PaDe-2-C6分别高出19和35倍,所以RIRI-PaDe-2-C6还无法作为IC-BEVS的工程细胞株用于生产。笔者推测造成这种结果的主要原因是达摩凤蝶并不是AcMNPV的天然宿主。自然界中杆状病毒具有高度的宿主特异性,一种病毒往往只能感染亲缘性较近的少数几种昆虫,但这种宿主特异性是相对的,每种病毒有一个原始宿主,但也往往可以感染若干替代宿主。一般来说,替代宿主对病毒的感受性较原始宿主低[22]。AcMNPV的宿主域较广,能感染多种鳞翅目昆虫。正是这个原因使AcMNPV成为IC-BEVS最常用的载体而被用于构建重组病毒,在其敏感型宿主细胞内能够大量表达外源蛋白。由此可见,重组病毒表达载体的选择是影响外源蛋白表达水平的重要因素。目前已知有多种方法可用于提高外源蛋白在IC-BEVS的表达水平,如共表达伴侣蛋白[23-24]、开发转基因细胞[25]、延长转染后宿主细胞寿命以及延缓重组蛋白降解[26]等。这些基于细胞和病毒改造的生物技术为外源蛋白在IC-BEVS中高效表达提供了可能,但达摩凤蝶细胞系及其克隆株能否通过上述方法提高外源基因表达水平还待进一步研究。

    • 综上所述,达摩凤蝶细胞细胞系RIRI-PaDe-2及其克隆株RIRI-PaDe-2-C6均能表达β-半乳糖苷酶和分泌型碱性磷酸酶,通过单细胞克隆方法获得的克隆株RIRI-PaDe-2-C6对外源蛋白的表达水平与原细胞系RIRI-PaDe-2有一定区别,特别是对重组β-Gal的表达水平显著高于原细胞系RIRI-PaDe-2(P < 0.05)。在生物学特性方面,克隆株RIRI-PaDe-2-C6与原细胞系RIRI-PaDe-2-C6也存在明显差异,研究结果为后续改进驯化宿主细胞系和外源基因表达提供了可能和基础。

参考文献 (26)

目录

    /

    返回文章
    返回