• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间伐对杉木人工林不同组分碳、氮、磷含量及其生态化学计量关系的影响

邱勇斌 凌高潮 郑文华 邢文黎 成向荣

引用本文:
Citation:

间伐对杉木人工林不同组分碳、氮、磷含量及其生态化学计量关系的影响

    通讯作者: 成向荣, chxr@caf.ac.cns
  • 基金项目:

    国家重点研发计划项目 2017YFC0505502

    国家重点研发计划项目 2017YFC0505500

  • 中图分类号: S753

Effects of Thinning on Contents and Stoichiometry of C, N, and P in Different Components of Chinese Fir Plantation

    Corresponding author: CHENG Xiang-rong, chxr@caf.ac.cns
  • CLC number: S753

  • 摘要: 目的 研究间伐后杉木人工林碳(C)、氮(N)、磷(P)生态化学计量关系变化,为杉木人工林养分循环研究提供参考。 方法 在浙江开化县林场17年生杉木人工纯林内,建立9块20 m×20 m的固定样地,测定分析了未间伐、中度间伐(20%间伐强度)和强度间伐(37%间伐强度)处理地表凋落物、林下植被、杉木细根和土壤C、N、P含量及其计量关系。 结果 间伐2 a后,强度间伐处理地表凋落物和杉木细根生物量显著降低,林下植被生物量显著增加。强度间伐处理下地表凋落物总氮(TN)含量显著降低,林下植被总氮(TN)含量则显著增加,土壤有机碳(SOC)和总氮(TN)含量也显著增加,杉木细根C、N、P含量在未间伐、中度间伐和强度间伐之间无显著差异。地表凋落物C/N和C/P随着间伐强度增加而增大;林下植被C/N随着间伐强度增加而减小,N/P比随着间伐强度增加而增大;杉木细根和土壤C/N、C/P和N/P在不同间伐处理之间差异不显著。土壤与林下植被C、N、P含量及其比值具有显著相关性。 结论 间伐后短期内杉木人工林地表凋落物、林下植被和土壤C、N含量受间伐强度显著影响,间伐改变了地表凋落物和林下植被C、N、P生态化学计量关系,但对杉木细根和土壤C、N、P生态化学计量关系无显著影响。
  • 表 1  不同间伐处理凋落物生物量和C、N、P含量及其比值

    Table 1.  Biomass, C, N, and P contents and their ratios in the litters among different thinning treatments

    处理
    Treatment
    生物量
    Biomass/(t·hm-2)
    TOC/
    (g·kg-1)
    TN/
    (g·kg-1)
    TP/
    (g·kg-1)
    C/N C/P N/P
    T0 7.79±0.48a 450.75±20.51a 10.46±0.20a 0.49±0.01a 43.09±1.20b 919.90±71.57b 21.35±1.81a
    T20 6.76±0.69ab 459.53±19.80a 9.42±1.46ab 0.43±0.05a 48.78±4.34ab 1 068.67±57.38a 21.91±0.91a
    T37 6.34±0.25b 453.50±19.12a 8.80±0.62b 0.44±0.04a 51.53±5.26a 1 030.68±60.99a 20.00±2.78a
    注:表中的数据为平均值±标准差。同一列平均数后注有不同字母者为达到新复极差测验5%显著水平。下同。
    Note: The data in the table are mean values±standard deviation. Different letters within the same column mean significant difference between treatments according to Duncan’s new multiple range test, P≤0.05. The same below.
    下载: 导出CSV

    表 2  不同间伐处理对林下植被生物量和C、N、P含量及其比值的影响

    Table 2.  Biomass, C, N and P contents and their ratios in the understory vegetation among different thinning treatments

    处理
    Treatment
    生物量
    Biomass/(t·hm-2)
    TOC/
    (g·kg-1)
    TN/
    (g·kg-1)
    TP/
    (g·kg-1)
    C/N C/P N/P
    T0 1.49±0.43b 444.33±12.34a 15.43±1.42b 1.07±0.25a 28.93±2.42a 433.59±71.56a 14.86±2.67b
    T20 1.98±0.91ab 441.67±27.79a 18.35±1.70b 0.95±0.11a 24.20±2.78b 465.07±32.75a 19.33±1.90ab
    T37 2.36±0.65a 458.01±13.08a 23.22±1.76a 1.10±0.15a 19.78±1.11b 421.54±44.73a 21.34±2.41a
    下载: 导出CSV

    表 3  不同间伐处理杉木细根生物量和C、N、P含量及其比值

    Table 3.  Biomass, C, N and P contents and their ratios in the fine roots of Chinese fir among different thinning treatments

    处理
    Treatment
    生物量
    Biomass/(t·hm-2)
    TOC/
    (g·kg-1)
    TN/
    (g·kg-1)
    TP/
    (g·kg-1)
    C/N C/P N/P
    T0 2.32±0.25a 396.50±17.16a 8.57±0.45a 0.49±0.08a 46.27±2.09a 809.18±142.55a 17.49±1.99a
    T20 1.86±0.37ab 422.02±33.23a 10.20±0.60a 0.53±0.03a 41.37±6.42a 798.91±38.77a 19.31±2.23a
    T37 1.47±0.28b 399.50±21.22a 8.81±1.36a 0.53±0.06a 45.35±4.48a 760.95±116.48a 16.78±3.00a
    下载: 导出CSV

    表 4  不同间伐处理对土壤C、N、P含量及其比值的影响

    Table 4.  Contents of C, N, and P and their ratios in the soil among different thinning treatments

    处理
    Treatment
    TOC/
    (g·kg-1)
    TN/
    (g·kg-1)
    TP/
    (g·kg-1)
    C/N C/P N/P
    T0 15.44±0.87b 1.29±0.07b 0.27±0.02a 11.94±0.19a 56.89±7.71a 4.76±0.60a
    T20 16.23±1.69ab 1.33±0.08b 0.26±0.03a 12.21±0.61a 61.84±5.38a 5.06±0.38a
    T37 18.56±0.89a 1.52±0.07a 0.31±0.04a 12.18±0.16a 59.53±4.13a 4.89±0.32a
    下载: 导出CSV

    表 5  凋落物、林下植被、细根和土壤C、N、P含量及其比值间的相关性

    Table 5.  Correlation of C, N and P and their ratios among the litter, understory vegetation, fine root and soil

    项目
    Items
    STOC STN STP SC/N SC/P SN/P
    LTOC 0.220 0.275 0.413 -0.036 -0.296 -0.324
    LTN -0.509 -0.431 -0.004 -0.477 -0.566 -0.472
    LTP -0.199 -0.147 0.240 -0.236 -0.519 -0.505
    LC/N 0.616 0.548 0.149 0.503 0.491 0.378
    LC/P 0.216 0.171 -0.171 0.230 0.448 0.425
    LN/P -0.527 -0.484 -0.331 -0.399 -0.177 -0.060
    UTOC 0.673* 0.697* 0.787* 0.297 -0.278 -0.424
    UTN 0.784* 0.814** 0.624 0.314 0.074 -0.028
    UTP 0.210 0.219 0.751* 0.087 -0.744* -0.872**
    UC/N -0.635 -0.648 -0.446 -0.278 -0.135 -0.056
    UC/P -0.105 -0.105 -0.628 -0.056 0.705* 0.816**
    UN/P 0.507 0.528 -0.046 0.191 0.635 0.651
    RTOC 0.246 0.281 0.096 0.035 0.133 0.143
    RTN 0.334 0.272 -0.228 0.364 0.664 0.617
    RTP 0.228 0.326 -0.022 -0.168 0.326 0.429
    RC/N -0.250 -0.165 0.311 -0.382 -0.689* -0.636
    RC/P -0.178 -0.257 0.078 0.145 -0.350 -0.444
    RN/P 0.060 -0.079 -0.177 0.450 0.257 0.127
    注:L、U、R、S分别代表凋落物、林下植被、细根和土壤;TOC、TN、TP、C/N、C/P、N/P分别代表各组分中C、N、P含量及其比值。
    Note: L, U, R and S indicate litters, understory vegetation, fine roots, and soil, respectively; TOC, TN, TP, C/N, C/P and N/P indicate C, N, P contents and their ratios in different components.
    下载: 导出CSV
  • [1] 贺金生, 韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报, 2010, 34(1):2-6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    [2]

    Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677):1623-1627. doi: 10.1126/science.1097396
    [3] 王绍强, 于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报, 2008, 28(8):3937-3947. doi: 10.3321/j.issn:1000-0933.2008.08.054

    [4]

    Sardans J, Rivas-Ubach A, Peñuelas J. The C:N:P stoichiometry of organisms and ecosystems in a changing world:A review and perspectives[J]. Perspectives in Plant Ecology Evolution & Systematics, 2012, 14(1):33-47.
    [5] 冯德枫, 包维楷.土壤碳氮磷化学计量比时空格局及影响因素研究进展[J].应用与环境生物学报, 2017, 23(2):400-408.

    [6] 孙雪娇, 常顺利, 宋成程, 等.雪岭云杉不同器官N、P、K化学计量特征随生长阶段的变化[J].生态学杂志, 2018, 37(5):1291-1298.

    [7] 郭剑芬, 杨玉盛, 陈光水, 等.森林凋落物分解研究进展[J].林业科学, 2006, 42(4):93-100.

    [8] 林娜, 刘勇, 李国雷, 等.抚育间伐对人工林凋落物分解的影响[J].世界林业研究, 2010, 23(3):44-47.

    [9] 余士香, 黄凤生, 成向荣.间伐对杉木叶凋落物和细根分解的影响[J].华东森林经理, 2018, 32(1):14-17. doi: 10.3969/j.issn.1004-7743.2018.01.004

    [10]

    Kunhamu T K, Kumar B M, Viswanath S. Does thinning affect litterfall, litter decomposition, and associated nutrient release in Acacia mangium stands of Kerala in peninsular India?[J]. Canadian Journal of Forest Research, 2009, 39(4):792-801. doi: 10.1139/X09-008
    [11] 徐金良, 毛玉明, 郑成忠, 等.抚育间伐对杉木人工林生长及出材量的影响[J].林业科学研究, 2014, 27(1):99-107.

    [12] 徐金良, 毛玉明, 成向荣, 等.间伐对杉木人工林碳储量的长期影响[J].应用生态学报, 2014, 25(7):1898-1904.

    [13] 赵朝辉, 方晰, 田大伦.间伐对杉木林林下地被物生物量及土壤理化性质的影响[J].中南林业科技大学学报, 2012, 32(5):102-107. doi: 10.3969/j.issn.1673-923X.2012.05.022

    [14] 方海波.间伐后杉木人工林生态系统养分动态的研究[J].中南林业科技大学学报, 1999(2):15-19. doi: 10.3969/j.issn.1673-923X.1999.02.003

    [15] 鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社, 2000.

    [16]

    Rietl A J, Jackson C R. Effects of the ecological restoration practices of prescribed burning and mechanical thinning on soil microbial enzyme activities and leaf litter decomposition[J]. Soil Biology and Biochemistry, 2012, 50:47-57. doi: 10.1016/j.soilbio.2012.03.008
    [17] 尤健健, 张文辉, 邓磊, 等.间伐对黄龙山油松中龄林细根空间分布和形态特征的影响[J].生态学报, 2017, 37(9):3065-3073.

    [18] 张慧玲, 宋新章, 哀建国, 等.增强紫外线-B辐射对凋落物分解的影响研究综述[J].浙江林学院学报, 2010, 27(1):134-142. doi: 10.3969/j.issn.2095-0756.2010.01.022

    [19]

    Mcgroddy M E, Daufresne T, Hedin L O. Scaling of C:N:P stoichiometry in forests worldwide:Implications of terrestrial red field type ratios[J]. Ecology, 2004, 85(9):2390-2401. doi: 10.1890/03-0351
    [20] 黄昌勇.土壤学[M].北京:中国农业出版社, 2000.

    [21]

    Tian H, Chen G, Zhang C, et al. Pattern and variation of C:N:P ratios in China's soils:a synthesis of observational data[J]. Biogeochemistry, 2010, 98:139-151. doi: 10.1007/s10533-009-9382-0
    [22] 任运涛, 徐翀, 张晨曦, 等.贺兰山青海云杉针叶C、N、P含量及其计量比随环境因子的变化特征[J].干旱区资源与环境, 2017, 31(6):185-191.

    [23]

    Parton W, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315(5810):361-364. doi: 10.1126/science.1134853
    [24] 刘倩, 王书丽, 邓邦良, 等.武功山山地草甸不同海拔凋落物土壤碳、氮、磷含量及其生态化学计量特征[J].应用生态学报, 2018, 29(5):1535-1541.

    [25] 马任甜, 安韶山, 黄懿梅.黄土高原不同林龄刺槐林碳、氮、磷化学计量特征[J].应用生态学报, 2017, 28(9):2787-2793.

  • [1] 熊有强盛炜彤曾满生 . 不同间伐强度杉木林下植被发育及生物量研究*. 林业科学研究, 1995, 8(4): 408-412.
    [2] 雷丽群卢立华农友明安刚刘士玲何远 . 不同林龄马尾松人工林土壤碳氮磷生态化学计量特征. 林业科学研究, 2017, 30(6): 954-960. doi: 10.13275/j.cnki.lykxyj.2017.06.010
    [3] 张天霖邱治军吴仲民陈志红胡辉周光益赵厚本李兆佳蔡章林 . 粤北针阔混交林不同器官碳氮磷钾的生态化学计量特征. 林业科学研究, 2021, 34(2): 149-157. doi: 10.13275/j.cnki.lykxyj.2021.02.016
    [4] 施志娟白彦锋孙睿彭阳姜春前汪思龙 . 杉木人工林伐后2种恢复模式碳储量的比较. 林业科学研究, 2017, 30(2): 214-221. doi: 10.13275/j.cnki.lykxyj.2017.02.005
    [5] 王翰琛张雄清张建国屈彦成姜丽 . 杉木人工林不同密度间伐林分生长优势的变化规律分析. 林业科学研究, 2021, 34(5): 32-38. doi: 10.13275/j.cnki.lykxyj.2021.005.004
    [6] 胡雪凡段光爽张会儒卢军张晓红 . 蒙古栎次生林林木竞争对不同抚育间伐方式的响应. 林业科学研究, 2021, 34(1): 1-9. doi: 10.13275/j.cnki.lykxyj.2021.01.001
    [7] 原雅楠李正才王斌张雨洁黄盛怡 . 不同品种榧树针叶-土壤C、N、P生态化学计量特征研究. 林业科学研究, 2020, 33(6): 49-56. doi: 10.13275/j.cnki.lykxyj.2020.06.006
    [8] 张景润左珂怡郭子武凡莉莉林华胡瑞财陈双林 . 亚热带不同地区苦竹叶片养分化学计量变异特征及其环境的驱动作用. 林业科学研究, 2024, 37(): 1-10. doi: 10.12403/j.1001-1498.20230364
    [9] 徐金良毛玉明郑成忠范荣德周世水陈永辉成向荣虞木奎 . 抚育间伐对杉木人工林生长及出材量的影响. 林业科学研究, 2014, 27(1): 99-107.
    [10] 张虹于姣妲李海洋张燕林潘菲周垂帆刘爱琴 . 不同栽植代数杉木人工林土壤磷素特征研究. 林业科学研究, 2021, 34(1): 10-18. doi: 10.13275/j.cnki.lykxyj.2021.01.002
    [11] 韦宜慧陈嘉琪董玉红厚凌宇焦如珍 . 杉木人工林土壤溶磷细菌筛选及培养条件优化. 林业科学研究, 2020, 33(4): 83-91. doi: 10.13275/j.cnki.lykxyj.2020.04.011
    [12] 刘仁袁小兰刘俏张春阳郭春兰陈伏生王辉民李建军 . 林下植被去除对杉木人工林土壤酶活性及其化学计量比的影响. 林业科学研究, 2020, 33(5): 121-128. doi: 10.13275/j.cnki.lykxyj.2020.05.015
    [13] 聂道平 . 不同立地条件的杉木人工林生产力和养分循环*. 林业科学研究, 1993, 6(6): 643-649.
    [14] 盛炜彤 . 不同密度杉木人工林林下植被发育与演替的定位研究. 林业科学研究, 2001, 14(5): 463-471.
    [15] 吴隆高陈天华陈林恩林日传 . 杉木团状造林抚育间伐效益研究. 林业科学研究, 2003, 16(5): 610-616.
    [16] 杨波童书振 . 杉木间伐后直径生长竞争模型的建立及应用*. 林业科学研究, 1993, 6(2): 210-215.
    [17] 洪玲霞 . 初植密度、间伐对杉木林分优势高生长过程的影响. 林业科学研究, 1997, 10(4): 448-452.
    [18] 王雪峰杜纪山 . 全林整体模型在林分间伐模拟中的效果评定. 林业科学研究, 2000, 13(3): 233-238.
    [19] 朱喜何志斌杜军杨军军陈龙飞 . 间伐对祁连山青海云杉人工林土壤水分的影响. 林业科学研究, 2015, 28(1): 55-60.
    [20] 焦如珍杨承栋 . 不同代杉木人工林根际及非根际土壤微生物数量及种类的变化. 林业科学研究, 1999, 12(1): 15-18.
  • 加载中
计量
  • 文章访问数:  4525
  • HTML全文浏览量:  2017
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-25
  • 录用日期:  2018-11-17
  • 刊出日期:  2019-08-01

间伐对杉木人工林不同组分碳、氮、磷含量及其生态化学计量关系的影响

    通讯作者: 成向荣, chxr@caf.ac.cns
  • 1. 浙江省开化县林场, 浙江 开化 324300
  • 2. 中国林业科学研究院亚热带林业研究所, 浙江 杭州 311400
基金项目:  国家重点研发计划项目 2017YFC0505502国家重点研发计划项目 2017YFC0505500

摘要:  目的 研究间伐后杉木人工林碳(C)、氮(N)、磷(P)生态化学计量关系变化,为杉木人工林养分循环研究提供参考。 方法 在浙江开化县林场17年生杉木人工纯林内,建立9块20 m×20 m的固定样地,测定分析了未间伐、中度间伐(20%间伐强度)和强度间伐(37%间伐强度)处理地表凋落物、林下植被、杉木细根和土壤C、N、P含量及其计量关系。 结果 间伐2 a后,强度间伐处理地表凋落物和杉木细根生物量显著降低,林下植被生物量显著增加。强度间伐处理下地表凋落物总氮(TN)含量显著降低,林下植被总氮(TN)含量则显著增加,土壤有机碳(SOC)和总氮(TN)含量也显著增加,杉木细根C、N、P含量在未间伐、中度间伐和强度间伐之间无显著差异。地表凋落物C/N和C/P随着间伐强度增加而增大;林下植被C/N随着间伐强度增加而减小,N/P比随着间伐强度增加而增大;杉木细根和土壤C/N、C/P和N/P在不同间伐处理之间差异不显著。土壤与林下植被C、N、P含量及其比值具有显著相关性。 结论 间伐后短期内杉木人工林地表凋落物、林下植被和土壤C、N含量受间伐强度显著影响,间伐改变了地表凋落物和林下植被C、N、P生态化学计量关系,但对杉木细根和土壤C、N、P生态化学计量关系无显著影响。

English Abstract

  • 碳(C)、氮(N)和磷(P)是维持植物结构和生长的主要元素,生态系统C、N和P的循环也是生态学研究的重点内容之一,C与N、P等元素循环过程密切相关[1-3]。C、N和P生态化学计量关系制约着生态系统养分循环及其供求平衡。目前,国内外开展了大量从植物个体到生态系统水平的生态化学计量学研究,多数研究主要关注植物地上部分和土壤化学计量关系[4-6],较少从植物-凋落物-土壤系统来探讨C、N和P的动态平衡过程及生态系统功能变化。

    间伐是一种常规的森林经营技术措施,通过降低林分密度,改善林分结构和种间关系,在人工林培育过程中具有重要作用。森林凋落物分解是土壤养分的主要来源,也是维持森林生态系统养分平衡的重要因素[7]。已有研究表明,间伐改变了林分冠层结构,短期内导致林内微环境的显著变化,进而影响地上/地下凋落物的产量、质量和分解[8-9]。如Kunhamu等[10]研究发现,间伐减少了凋落物中N、P含量。间伐后林下光照环境改善,导致林下植被组成及其多样性发生变化[8]。此外,由于间伐改变了土壤养分的输入输出过程,对土壤碳储量及养分含量有重要影响[8-10]

    杉木(Cunninghamia lanceolata (Lamb.) Hook.)是我国南方山地丘陵区的主要造林树种,在木材生产和生态系统服务功能方面发挥了重要作用。根据第八次全国森林资源清查数据,杉木人工林面积最大,达895万hm2,占人工林总面积的19.01%。目前,围绕间伐对杉木人工林生长[11]、碳储量[12]和土壤质量[13-14]等方面开展了一些研究,为科学评估经营管理措施对杉木人工林系统的影响奠定了基础。林分间伐可能影响人工林不同组分C、N和P的含量及其计量关系,但相关的研究十分有限。为此,在浙江开化县林场,以间伐2 a后的杉木人工林为研究对象,研究不同间伐处理对凋落物、林下植被、杉木细根和土壤C、N和P含量及其计量关系的影响,以期为杉木人工林经营管理和养分循环研究提供参考依据。

    • 试验区位于浙江省开化县林场城关分场(118°25′E,29°09′N)。试验区年平均气温16.4℃,年平均降水量1 814 mm,无霜期252 d,年日照总时数1 334.1 h,属亚热带季风气候。海拔高度180~300 m,土壤为红黄壤,土层厚度80 cm以上,平均坡度18°。

    • 试验林分为17年生杉木纯林,初植密度为2 500株·hm-2,2006年进行第1次抚育间伐(间伐强度约18%)。2011年3月进行第2次间伐,采用下层间伐法,按照留优去劣、间密留匀、兼顾株间距的原则,间伐平均木以下的个体,分别设置中度间伐(20%间伐强度,T20)、强度间伐(37%间伐强度,T37)和未间伐(对照,T0)3个处理,每个处理的小区面积为20 m×20 m,3次重复。间伐前林分生长特征基本一致,郁闭度0.9以上。2012年10月调查结果显示,未间伐、中度间伐和强度间伐保留密度分别为1 775、1 408、1 114株·hm-2,平均树高分别为14.5、14.8、14.9 m,平均胸径分别为17.6、18.5、19.1 cm。

    • 在每块样地的对角线上分别设置3个1 m×1 m的样方,采用全株收获法收集样方内所有植被,同时收集样方内所有凋落物,称鲜质量后,分别取一部分林下植被和凋落物样品带回实验室用于含水量和化学性质测定。在每个样地内随机选择5个样点,用土钻采集0~20 cm土样,同一样地5个土样混合后装袋、编号。杉木细根(≤2 mm)采用根钻(=7 cm)取样,在每块样地内随机取10个样点手工挑拣0~20 cm土层根系,根据颜色、弹性和木质化程度等区分杉木根系和林下植被根系,挑选的杉木活根系装入自封袋,编号后带回实验室,通过游标卡尺测量根系直径,确定细根。带回实验室的凋落物、林下植被和杉木细根样品立刻在70℃的烘箱内干燥至恒质量,土壤样品置于阴凉处,自然风干、过筛后用于土壤化学性质测定。凋落物、林下植被、细根和土壤总有机碳(Total organic carbon, TOC)含量采用重铬酸钾氧化-外加热法测定,总氮(Total nitrogen, TN)采用凯氏定氮法测量,总磷(Total phosphorus, TP)用钼蓝比色法测定[15]

    • 不同间伐处理之间凋落物、林下植被、细根和土壤碳、氮、磷含量及其比值的差异采用单因素方差分析来检验,并进行Duncan多重比较。所有数据采用Excel 2013和SPSS 17.0软件进行分析处理。

    • 试验结果显示,地表凋落物生物量随着间伐强度增大逐渐减小,中度间伐和强度间伐处理凋落物生物量分别比对照减少13.22%和18.61%,强度间伐处理与对照之间差异显著(P < 0.05)(表 1)。对凋落物C、N和P含量的分析表明,总有机碳(TOC)和总磷(TP)含量在不同间伐处理之间无显著差异(P>0.05),间伐后凋落物总氮(TN)含量显著降低(P < 0.05)(表 1)。中度间伐和强度间伐处理C/N(中度间伐除外)和C/P显著高于对照(P < 0.05),但N/P在不同间伐处理之间差异不显著(P>0.05)。

      表 1  不同间伐处理凋落物生物量和C、N、P含量及其比值

      Table 1.  Biomass, C, N, and P contents and their ratios in the litters among different thinning treatments

      处理
      Treatment
      生物量
      Biomass/(t·hm-2)
      TOC/
      (g·kg-1)
      TN/
      (g·kg-1)
      TP/
      (g·kg-1)
      C/N C/P N/P
      T0 7.79±0.48a 450.75±20.51a 10.46±0.20a 0.49±0.01a 43.09±1.20b 919.90±71.57b 21.35±1.81a
      T20 6.76±0.69ab 459.53±19.80a 9.42±1.46ab 0.43±0.05a 48.78±4.34ab 1 068.67±57.38a 21.91±0.91a
      T37 6.34±0.25b 453.50±19.12a 8.80±0.62b 0.44±0.04a 51.53±5.26a 1 030.68±60.99a 20.00±2.78a
      注:表中的数据为平均值±标准差。同一列平均数后注有不同字母者为达到新复极差测验5%显著水平。下同。
      Note: The data in the table are mean values±standard deviation. Different letters within the same column mean significant difference between treatments according to Duncan’s new multiple range test, P≤0.05. The same below.
    • 林下植被生物量随着间伐强度增大而增加,中度间伐和强度间伐处理林下植被生物量分别比对照增加32.89%和53.39%,强度间伐处理与对照之间差异显著(P < 0.05)(表 2)。林下植被总有机碳(TOC)和总磷(TP)含量在不同间伐处理之间无显著差异(P>0.05),强度间伐处理总氮(TN)含量显著高于对照(P < 0.05)。随着间伐强度增加,C/N比值显著降低(P < 0.05),而N/P比值逐渐增大,C/P比值在不同处理之间无显著差异(P>0.05)。

      表 2  不同间伐处理对林下植被生物量和C、N、P含量及其比值的影响

      Table 2.  Biomass, C, N and P contents and their ratios in the understory vegetation among different thinning treatments

      处理
      Treatment
      生物量
      Biomass/(t·hm-2)
      TOC/
      (g·kg-1)
      TN/
      (g·kg-1)
      TP/
      (g·kg-1)
      C/N C/P N/P
      T0 1.49±0.43b 444.33±12.34a 15.43±1.42b 1.07±0.25a 28.93±2.42a 433.59±71.56a 14.86±2.67b
      T20 1.98±0.91ab 441.67±27.79a 18.35±1.70b 0.95±0.11a 24.20±2.78b 465.07±32.75a 19.33±1.90ab
      T37 2.36±0.65a 458.01±13.08a 23.22±1.76a 1.10±0.15a 19.78±1.11b 421.54±44.73a 21.34±2.41a
    • 杉木细根生物量随着间伐强度增大而减小,中度间伐和强度间伐处理细根生物量分别比对照减少19.83%和36.64%,强度间伐处理与对照之间差异显著(P < 0.05)(表 3)。杉木细根总有机碳(TOC)、总氮(TN)和总磷(TP)含量在不同间伐处理之间差异不显著(P>0.05),C/N、C/P及N/P比值在不同间伐处理之间也无显著差异(P>0.05)。

      表 3  不同间伐处理杉木细根生物量和C、N、P含量及其比值

      Table 3.  Biomass, C, N and P contents and their ratios in the fine roots of Chinese fir among different thinning treatments

      处理
      Treatment
      生物量
      Biomass/(t·hm-2)
      TOC/
      (g·kg-1)
      TN/
      (g·kg-1)
      TP/
      (g·kg-1)
      C/N C/P N/P
      T0 2.32±0.25a 396.50±17.16a 8.57±0.45a 0.49±0.08a 46.27±2.09a 809.18±142.55a 17.49±1.99a
      T20 1.86±0.37ab 422.02±33.23a 10.20±0.60a 0.53±0.03a 41.37±6.42a 798.91±38.77a 19.31±2.23a
      T37 1.47±0.28b 399.50±21.22a 8.81±1.36a 0.53±0.06a 45.35±4.48a 760.95±116.48a 16.78±3.00a
    • 随着间伐强度增大,土壤总有机碳(TOC)、总氮(TN)和总磷(TP)含量均呈增加趋势,强度间伐处理TOC和总氮(TN)含量显著高于对照处理(P < 0.05),中度间伐与对照处理之间差异不显著(P>0.05)(表 4)。土壤C/N、C/P和N/P比值在不同间伐处理之间无显著差异(P>0.05)。

      表 4  不同间伐处理对土壤C、N、P含量及其比值的影响

      Table 4.  Contents of C, N, and P and their ratios in the soil among different thinning treatments

      处理
      Treatment
      TOC/
      (g·kg-1)
      TN/
      (g·kg-1)
      TP/
      (g·kg-1)
      C/N C/P N/P
      T0 15.44±0.87b 1.29±0.07b 0.27±0.02a 11.94±0.19a 56.89±7.71a 4.76±0.60a
      T20 16.23±1.69ab 1.33±0.08b 0.26±0.03a 12.21±0.61a 61.84±5.38a 5.06±0.38a
      T37 18.56±0.89a 1.52±0.07a 0.31±0.04a 12.18±0.16a 59.53±4.13a 4.89±0.32a
    • 表 5可以看出,凋落物C、N、P含量与土壤C、N、P含量及其比值之间无显著相关性(P>0.05);林下植被C、N、P含量与土壤C、N、P含量呈显著正相关(P < 0.05),土壤C/N和N/P与林下植被C/P比呈正相关(P < 0.05),而与林下植被总磷(TP)含量呈负相关(P < 0.05)。杉木细根C、N、P含量及其比值与土壤C、N、P含量及其比值的相关性较弱,仅细根C/N与土壤C/P呈显著负相关(P < 0.05)。

      表 5  凋落物、林下植被、细根和土壤C、N、P含量及其比值间的相关性

      Table 5.  Correlation of C, N and P and their ratios among the litter, understory vegetation, fine root and soil

      项目
      Items
      STOC STN STP SC/N SC/P SN/P
      LTOC 0.220 0.275 0.413 -0.036 -0.296 -0.324
      LTN -0.509 -0.431 -0.004 -0.477 -0.566 -0.472
      LTP -0.199 -0.147 0.240 -0.236 -0.519 -0.505
      LC/N 0.616 0.548 0.149 0.503 0.491 0.378
      LC/P 0.216 0.171 -0.171 0.230 0.448 0.425
      LN/P -0.527 -0.484 -0.331 -0.399 -0.177 -0.060
      UTOC 0.673* 0.697* 0.787* 0.297 -0.278 -0.424
      UTN 0.784* 0.814** 0.624 0.314 0.074 -0.028
      UTP 0.210 0.219 0.751* 0.087 -0.744* -0.872**
      UC/N -0.635 -0.648 -0.446 -0.278 -0.135 -0.056
      UC/P -0.105 -0.105 -0.628 -0.056 0.705* 0.816**
      UN/P 0.507 0.528 -0.046 0.191 0.635 0.651
      RTOC 0.246 0.281 0.096 0.035 0.133 0.143
      RTN 0.334 0.272 -0.228 0.364 0.664 0.617
      RTP 0.228 0.326 -0.022 -0.168 0.326 0.429
      RC/N -0.250 -0.165 0.311 -0.382 -0.689* -0.636
      RC/P -0.178 -0.257 0.078 0.145 -0.350 -0.444
      RN/P 0.060 -0.079 -0.177 0.450 0.257 0.127
      注:L、U、R、S分别代表凋落物、林下植被、细根和土壤;TOC、TN、TP、C/N、C/P、N/P分别代表各组分中C、N、P含量及其比值。
      Note: L, U, R and S indicate litters, understory vegetation, fine roots, and soil, respectively; TOC, TN, TP, C/N, C/P and N/P indicate C, N, P contents and their ratios in different components.
    • 间伐改变了林分空间结构,进而影响保留木生长、凋落物分解,以及林下植被生长[8]。本研究发现,间伐2 a后,地表凋落物和0~20 cm土层杉木活细根生物量减少,林下植被生物量显著增加。这是因为间伐后林木株数减少,林分郁闭度降低,地表温度升高,促进了地表凋落物的分解,同时也与地表凋落物输入减少有关[16-18]。郁闭度降低同样促进了林下植被的快速生长。杉木活细根生物量减少主要与间伐后林木密度降低有关。这与尤健健等[17]对油松(Pinus tabuliformis Carr.)间伐试验的研究结果一致。

      生态系统内部C、N和P循环是在植物、凋落物和土壤之间相互转换的结果,植被C:N:P化学计量关系的变化影响土壤养分含量及其计量特征[19]。间伐后短期内,浅层土壤有机碳含量显著增加,但地表凋落物、林下植被和杉木细根总有机碳(TOC)含量在不同间伐处理之间无显著差异。尽管如此,地表凋落物和杉木细根生物量在间伐样地显著降低,因而间伐处理浅层土壤总有机碳(TOC)增加可能主要来自凋落物和细根的快速分解,导致输入土壤的有机物增多。间伐处理浅层土壤的总氮(TN)含量增加主要与林下植被具有较高含氮量有关。间伐后林下植被组成发生较大变化,许多草本植物快速生长,这些草本植物分解快,可能促进了土壤总氮(TN)含量增加。此外,间伐林地凋落物和杉木细根快速分解也有助于土壤中氮元素的积累。凋落物、林下植被、杉木细根和土壤中的总磷(TP)含量在不同间伐处理之间保持相对稳定,表明总磷(TP)含量受短期间伐影响较小,一方面可能与干扰强度较小、持续时间较短有关,另一方面,研究区土壤有效磷贫乏,导致总磷(TP)含量对短期间伐干扰的敏感性可能相对较低。

      研究表明,土壤碳固定依赖于植被和土壤之间碳和养分的分配以及输入碳对微生物组成的影响[3]。本研究中土壤C/N、C/P和N/P比在不同间伐处理之间变异较小,C/N基本在12左右,接近中国土壤C/N平均值(10~12)[20]。Tian等[21]研究也发现,中国不同区域C/N土壤具有较大的空间变异性,但C/N在积累和消耗过程中具有相对稳定的比值。土壤C、N、P含量之间正相关,表明间伐对土壤C、N、P元素具有正向协同作用,因而C、N、P的比值也保持相对稳定。凋落物C/N和C/P通常可以反映植物N和P的利用效率,一定程度上指示土壤N和P的供应状况[22-23]。当凋落物C/N<40时,凋落物矿化分解促进N释放,凋落物分解速率与C/N和C/P负相关,较低的C/N和C/P有利于凋落物快速分解[23]。同样,较低的N/P也将促进凋落物的分解及养分归还[24-25]。本研究地表凋落物C/N比在43.09~51.53之间,C/P比在919.90~1 068.67之间;C/N和C/P比随着间伐强度增加而增大,但N/P在不同处理之间差异不显著。尽管间伐处理较高的凋落物C/N和C/P可能不利于其分解释放养分,但林下植被C/N较低(19.78~28.93),且随着间伐强度增加显著减小。因此,间伐后林下植被快速分解是土壤养分的重要来源,尤其有利于土壤N的积累。杉木细根的C/N、C/P和N/P在不同处理之间差异不显著,表明间伐在短期内不会显著影响细根的C、N、P含量及其比值。

    • 对不同间伐处理2 a后杉木人工林地表凋落物、林下植被、杉木细根和土壤C、N、P含量及其生态化学计量关系的研究发现,间伐强度显著影响地表凋落物、林下植被和杉木细根生物量,强度间伐(37%间伐强度)处理地表凋落物和杉木细根生物量显著低于未间伐处理,林下植被生物量高于未间伐处理;而中度间伐(20%间伐强度)处理不会显著影响地表凋落物、林下植被和杉木细根生物量。强度间伐处理导致地表凋落物总氮含量下降,林下植被总氮含量增加,土壤总有机碳和总氮含量也显著增大。间伐对杉木细根C、N、P含量影响较小。间伐改变了地表凋落物和林下植被的C、N、P生态化学计量关系,但对杉木细根和土壤C、N、P生态化学计量关系无显著影响。本研究仅开展了间伐后2 a地表凋落物、林下植被、杉木细根和土壤C、N、P生态化学计量关系的变化,随着间伐时间延长,不同间伐处理林分结构和环境趋于一致,各组分C、N、P含量及其化学计量关系将如何变化还有待进一步研究。

参考文献 (25)

目录

    /

    返回文章
    返回