• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

普瑞杨、46杨及107杨的林内SO2浓度及叶片硫酸根离子含量差异

冯锦霞 马洁 万贤崇

引用本文:
Citation:

普瑞杨、46杨及107杨的林内SO2浓度及叶片硫酸根离子含量差异

    通讯作者: 万贤崇, wxc@caf.ac.cn

Absorption and Transformation of Sulfur Dioxide by Populus × euramericana cv. 'Purui'

    Corresponding author: WAN Xian-chong, wxc@caf.ac.cn
  • 摘要: 目的 研究3种杨树对空气中SO2的吸收和转化作用,探索普瑞杨抗SO2的机制以及净化大气的能力。 方法 在普瑞杨、46杨和107杨森林中,测定林内、林外空气中SO2浓度的日动态变化,并测定在SO2污染环境和非污染环境条件下杨树叶片中硫酸根(SO42−)离子的浓度,依此比较3种杨树对SO2污染的净化作用。 结果 从林内、林外SO2浓度的日动态变化可见,3种杨树均能吸收SO2,其中,普瑞杨吸收SO2、净化空气的能力显著大于107杨和46杨。无论在高浓度还是低浓度SO2环境下,普瑞杨叶片中的硫酸根离子含量均显著高于46杨和107杨,说明普瑞杨具有更强的吸收SO2并转化为无毒含硫化合物的能力,这也是普瑞杨抗SO2的重要机理。 结论 普瑞杨具有比107杨和46杨更强的净化SO2污染环境的能力,从而可以更好净化空气,减少雾霾对人体的危害;普瑞杨具有更强的将SO2转化为无毒的硫酸根离子的能力,从而起到脱毒和抗SO2的作用。
  • 图 1  普瑞杨和107杨林内和林外不同时间SO2浓度的动态曲线

    Figure 1.  Diurnal dynamic changes of sulfur dioxide concentration in the air inside and outside the Purui and 107 poplar forests at different times

    图 2  普瑞杨林、46杨和107杨林内和林外不同时间SO2浓度动态变化。

    Figure 2.  Diurnal dynamic changes of sulfur dioxide concentration in the air inside and outside the Purui, 46 and 107 poplar forests at different times

    表 1  试验林基本信息

    Table 1.  Basic information of experimental forests

    地点Site品种Variety林龄/a Forest age密度/
    (m × m)
    Density
    树高/m Height胸径/cm DBH郁闭度
    Canopy density
    濮阳普瑞51.5 × 1.510.711.4完全
    濮阳4651.5 × 1.510.711.1完全
    濮阳普瑞81.5 × 1.516.313.3完全
    濮阳4681.5 × 1.515.512.4完全
    安阳普瑞82 × 618.316.7部分
    安阳10782 × 618.316.6部分
    献县普瑞52 × 312.914.3完全
    献县10752 × 312.713.8完全
    下载: 导出CSV

    表 2  普瑞杨和46杨林内以及林外的大气SO2浓度

    Table 2.  The sulfur dioxide concentration in the air inside and outside the Purui and Zhonglin 46 forests

    地点 SiteSO2浓度
    Concentration of sulfur dioxide/
    (mg·m−3
    普瑞杨林内 Purui poplar forest0.044 ± 0.002 5 c
    46杨林内 46 poplar forest0.052 ± 0.002 5 b
    林外空地 Open space outside the forest0.080 ± 0.006 2 a
      注:同列不同小写字母表示差异显著(p < 0.05)。
      Note: Different lowercase letters in the same column indicate significant (p < 0.05) differences.
    下载: 导出CSV

    表 3  普瑞杨与其它杨树品种叶片硫酸根含量的差异

    Table 3.  Difference of sulfate (SO42−) concentration in the leaves of Purui and other poplar varieties

    地点
    Site
    杨树品种
    Varieties
    SO42-浓度
    Concentration of sulfate/(µg·g-1)
    环境SO2浓度
    Concentration of sulfur dioxide in the air / (mg·g−1)
    热电厂 Power plant普瑞杨 Purui poplar 55.14 ± 3.48 A0.220 ± 0.025
    46杨 46 poplar25.86 ± 3.52 B
    苗圃 Nursery普瑞杨 Purui poplar22.14 ± 0.83 A0.017 ± 0.002
    107杨 107 poplar10.69 ± 1.98 B
      注:不同大写字母表示差异显著(p < 0.01)。
      Note: Different capital-letters in the same column indicate significant (p < 0.01) differences.
    下载: 导出CSV
  • [1]

    Zheng M, Cass C R, Schauer J J, et al. Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers[J]. Environmental Science and Technology, 2002, 36(11): 2361-2371. doi: 10.1021/es011275x
    [2] 吕效谱, 成海容, 王祖武, 等. 中国大范围雾霾期间大气污染特征分析[J]. 湖南科技大学学报:自然科学版, 2013, 28(3):104-110.

    [3]

    Huang R J, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. doi: 10.1038/nature13774
    [4] 徐 洁, 白坤栋, 万贤崇, 等. 欧美杨107杨抗硫无性系的变异及其抗氧化保护系统对SO2响应[J]. 林业科学, 2011, 47(2):66-71. doi: 10.11707/j.1001-7488.20110210

    [5] 万贤崇, 张存义, 冯锦霞, 等. 杨树抗硫新品种‘普瑞’[J]. 林业科学, 2012, 48(12):160. doi: 10.11707/j.1001-7488.20121225

    [6]

    Sekiya J, Wilson L G, Filner P. Resistance to injury by sulfur dioxide[J]. Plant Physiology, 1982, 70: 437-441. doi: 10.1104/pp.70.2.437
    [7]

    Thomas M D, Hendricks R H, Collier T R, et al. The utilization of sulfate and sulfur dioxide for the nutrition of alfalfa[J]. Plant Physiology, 1943, 18(3): 345-371. doi: 10.1104/pp.18.3.345
    [8]

    Tanaka K, Otsubo T, Kondo N. Participation of hydrogen peroxide in the inactivation of Calvin-cycle SH enzymes in SO2- fumigated spinach leaves[J]. Plant Cell Physiology, 1982, 23(6): 1009-1018.
    [9]

    Randewig D, Hamisch D, Eiblmeier M, et al. Oxidation and reduction of sulfite contribute to susceptibility and detoxification of SO2 in Populus × canescens leaves[J]. Trees, 2014, 28(2): 399-411. doi: 10.1007/s00468-013-0958-x
    [10] 黄会一, 张有标, 张春兴, 等. 木本植物对大气气态污染物吸收净化作用的研究[J]. 生态学报, 1981, 1(4):39-48.

    [11] 吴耀兴, 康文星, 郭清和, 等. 广州市城市森林对大气污染物吸收净化的功能价值[J]. 林业科学, 2009, 45(5):42-48. doi: 10.3321/j.issn:1001-7488.2009.05.006

    [12] 王荣新, 辛学兵, 裴顺祥, 等. 北京市9种常见绿化树种吸收积累SO2能力研究[J]. 林业科学研究, 2017, 30(3):392-398.

    [13]

    Brychkova G, Xia Z, Yang G, et al. Sulfite oxidase protects plants against sulfur dioxide toxicity[J]. Plant Journal, 2007, 50(4): 696-709. doi: 10.1111/j.1365-313X.2007.03080.x
    [14]

    Omasa K, Saji H, Youssefian S, et al. Air pollution and plant biotechnology[M]. Tokyo: Springer-Verlag, 2002.
    [15] 曹裕松, 李志安, 邹 碧. 森林植物的一些特殊环境功能[J]. 生态科学, 2003, 22(3):284-287. doi: 10.3969/j.issn.1008-8873.2003.03.020

    [16]

    Rennenberg H, Herschbach C. A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses[J]. Journal of Experimental Botany, 2014, 65(20): 5711-5724. doi: 10.1093/jxb/eru315
  • [1] 王荣新辛学兵裴顺祥郭嘉吴迪 . 北京市9种常见绿化树种吸收积累SO2能力研究. 林业科学研究, 2017, 30(3): 392-398. doi: 10.13275/j.cnki.lykxyj.2017.03.005
    [2] 陈颖李铃韩一凡 . 抗菌肽LcI基因转化杨树的阶段研究. 林业科学研究, 1996, 9(6): 646-649.
    [3] 李海阳赵立子赵岩秋PagKNAT2/6aPagKNAT2/6b在木质部发育中存在功能保守性. 林业科学研究, 2024, 37(2): 1-7. doi: 10.12403/j.1001-1498.20230244
    [4] 张绮纹苏晓华 . 克服杨树远缘杂交受精前障碍的研究. 林业科学研究, 1988, 1(2): 201-205.
    [5] 张廷桢 . 关于杨树遗传育种中的若干问题. 林业科学研究, 1996, 9(1): 80-86.
    [6] 高健吴泽民彭镇华 . 滩地杨树光合作用生理生态的研究. 林业科学研究, 2000, 13(2): 147-152.
    [7] 苏晓华丁明明黄秦军 . 外来杨树遗传资源及其存在的问题. 林业科学研究, 2005, 18(6): 743-748.
    [8] 向玉英 . 杨树上发生的两种病毒. 林业科学研究, 1990, 3(6): 553-557.
    [9] 高瑞桐杨自湘汪太振郝宏康中信 . 杨树对杨干象抗性选择的研究. 林业科学研究, 1991, 4(5): 517-522.
    [10] 马晖于卫平黄利江张广才牛长明王挺张发国魏永河 . 杨树速生丰产林的节水灌溉试验. 林业科学研究, 2004, 17(s1): 119-121.
    [11] 苏晓华李义良黄秦军张冰玉张香华何庆庚刘志新 . 节水高产优质杨树纸浆材品种综合选育研究. 林业科学研究, 2007, 20(5): 630-637.
    [12] 张进李建波刘伯斌陈军卢孟柱 . 杨树CDPK基因家族的表达分析及功能预测. 林业科学研究, 2014, 27(5): 604-611.
    [13] 赵学彩郑唐春臧丽娜曲冠证 . 杨树类锌指基因ZFL的功能分析. 林业科学研究, 2013, 26(5): 562-570.
    [14] 李煜张进王丽娟卢孟柱 . 杨树PtROP家族基因的表达分析与功能预测. 林业科学研究, 2017, 30(1): 1-9. doi: 10.13275/j.cnki.lykxyj.2017.01.001
    [15] 刘雅荣王世绩周国璋苏梦云 . 杨树苗木叶硝酸还原酶活力的初步研究. 林业科学研究, 1988, 1(3): 340-344.
    [16] 朱湘渝王瑞玲佟永昌黄东森 . 10个杨树杂种组合木材密度与纤维遗传变异研究*. 林业科学研究, 1993, 6(2): 131-135.
    [17] 杨志敏马克·维拉尔 . 环境条件对杨树花粉生活力的影响. 林业科学研究, 1990, 3(4): 388-392.
    [18] 李文杰邬承先柴承佑王翠莲周佳淼孙友学郑荣保 . 应用灭幼脲防治杨树天牛等害虫的研究*. 林业科学研究, 1992, 5(6): 722-726.
    [19] 苏晓华张绮纹曾大鹏张祝山邢亚杰 . 杨树无性系抗灰斑病离体培养的早期选择*. 林业科学研究, 1993, 6(3): 317-320.
    [20] 许景伟王卫东刘盛芳王文凤田华王福贵 . 黄泛平原农田林网杨树更新年龄的研究. 林业科学研究, 2001, 14(5): 574-577.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  3898
  • HTML全文浏览量:  2486
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 录用日期:  2021-09-27
  • 网络出版日期:  2021-10-19
  • 刊出日期:  2022-02-20

普瑞杨、46杨及107杨的林内SO2浓度及叶片硫酸根离子含量差异

    通讯作者: 万贤崇, wxc@caf.ac.cn
  • 中国林业科学研究院林业新技术研究所,北京 100091

摘要:  目的 研究3种杨树对空气中SO2的吸收和转化作用,探索普瑞杨抗SO2的机制以及净化大气的能力。 方法 在普瑞杨、46杨和107杨森林中,测定林内、林外空气中SO2浓度的日动态变化,并测定在SO2污染环境和非污染环境条件下杨树叶片中硫酸根(SO42−)离子的浓度,依此比较3种杨树对SO2污染的净化作用。 结果 从林内、林外SO2浓度的日动态变化可见,3种杨树均能吸收SO2,其中,普瑞杨吸收SO2、净化空气的能力显著大于107杨和46杨。无论在高浓度还是低浓度SO2环境下,普瑞杨叶片中的硫酸根离子含量均显著高于46杨和107杨,说明普瑞杨具有更强的吸收SO2并转化为无毒含硫化合物的能力,这也是普瑞杨抗SO2的重要机理。 结论 普瑞杨具有比107杨和46杨更强的净化SO2污染环境的能力,从而可以更好净化空气,减少雾霾对人体的危害;普瑞杨具有更强的将SO2转化为无毒的硫酸根离子的能力,从而起到脱毒和抗SO2的作用。

English Abstract

  • 二氧化硫(SO2)是主要的大气污染物,主要源于煤和石油的燃烧。SO2在空气中会氧化形成硫酸盐、气溶胶((NH4)2SO4)等衍生物,是PM2.5和雾霾的组成成分,也是雾霾中的主要有害成分,造成二次污染,严重危害人体健康[1-3]。随着我国工业化、城镇化和重化工业的继续快速发展、能源消费和机动车保有量的快速增长,SO2乃至雾霾污染形势十分严峻。环境治理、生态文明建设是当前重大国策。

    普瑞杨是近年发现的杨树抗SO2新品种(品种权号:20120047),有很强的抗SO2有毒气体特性,在SO2污染和酸雨严重地区仍生长旺盛[4-5]。在高达26 mg·m−3的SO2浓度短期静态熏气条件下,普瑞杨没有出现叶片受害症状,而且可维持较强光合速率[4]。另外,普瑞杨还兼具107杨的速生等性状[5]

    植物主要通过气孔吸收大气中的SO2,在植物体内,SO2遇水转化成亚硫酸盐(SO32−[6]。这些亚硫酸盐对植物具有很强毒性[7],通过形成活性氧(ROS)和其他自由基等干扰生理过程[8];但硫是植物生长发育必需的矿质元素,是含硫氨基酸以及谷胱甘肽的组成成分。植物可以通过代谢将亚硫酸盐转化为硫酸根离子,而硫酸根对植物没有毒害作用,所以植物将亚硫酸盐转化成硫酸根就起到解除毒性的作用。硫酸根主要存在于液泡中,一部分硫酸根还会进一步还原及同化后生成半胱氨酸,半胱氨酸进一步合成甲硫氨酸和谷胱甘肽[9]。谷胱甘肽是一种重要的抗氧化剂,负责维持细胞在胁迫下的抗氧化机制。笔者先前的研究发现,普瑞杨叶片的谷胱甘肽含量比107杨高,在高SO2浓度环境下仍可维持较高光合作用速度及气孔导度[4]

    有关植物吸收、转化及利用SO2的研究,有助于深入了解植物的大气净化和环境保护作用、利于人们更深刻体会到绿水青山就是金山银山。多年生的木本植物可以持续的起到大气净化作用,并可将大气中有害污染物转化为对植物自身有益的化合物。关于植物对大气SO2的净化作用,以前的报道多通过测定叶片含硫量的变化来推测植物的净化作用[10-12],没有同时直接测定空气中的SO2浓度变化。另外,叶片含硫量的测定是测定植物体内的总硫含量,其可能包括植物体内的SO2和亚硫酸盐,这些化合物对植物有毒害作用。所以,总硫的测定不能体现植物对SO2的脱毒功能。

    笔者推测普瑞杨可以吸收更多SO2,并且有更强的将SO2转化为硫酸根离子的解毒能力。所以,本研究通过测定普瑞杨林内空气中SO2浓度,与空旷地和其它杨树品种林内测定值对照,以说明普瑞杨减少大气SO2的净化能力;通过测定普瑞杨在大气SO2污染环境和无污染环境(苗圃)中叶片硫酸根的含量,探索普瑞杨是否有降低SO2毒害的能力。

    • 试验一:在河南省濮阳市热电厂大院内试验林进行。在试验初期,该试验地的空气SO2浓度较高。为了比较普瑞杨和46杨的抗SO2能力,2010春在该电厂内扦插了1年生普瑞杨和46杨各1 hm2左右,株行距为150 cm × 150 cm。2014年7月28日9:00—11:00 am,对种在热电厂内的普瑞杨林内和比邻的46杨林内以及紧邻的空旷地,进行了空气SO2浓度的测定。2015年7月6日,从8:00—18:00,每2 h取1次空气样品,对热电厂的普瑞杨林内、46杨林内和空旷地空气SO2浓度进行了全天动态检测。

      试验二:2018年5月中旬,分别在3个地点(河南省濮阳市热电厂大院内试验林,河南安阳汤阴宜沟镇大寺台村普瑞杨、107杨试验林,河北献县河城街镇王友村普瑞杨、107杨试验林)对普瑞杨、46杨和107杨林内外空气SO2浓度进行了再次全天动态检测,3个地点的基本信息见表1

      表 1  试验林基本信息

      Table 1.  Basic information of experimental forests

      地点Site品种Variety林龄/a Forest age密度/
      (m × m)
      Density
      树高/m Height胸径/cm DBH郁闭度
      Canopy density
      濮阳普瑞51.5 × 1.510.711.4完全
      濮阳4651.5 × 1.510.711.1完全
      濮阳普瑞81.5 × 1.516.313.3完全
      濮阳4681.5 × 1.515.512.4完全
      安阳普瑞82 × 618.316.7部分
      安阳10782 × 618.316.6部分
      献县普瑞52 × 312.914.3完全
      献县10752 × 312.713.8完全

      另外,2015年7月6日采集了种在濮阳热电厂普瑞杨和46杨大树的成熟叶片;2018年5月中旬,在河南安阳汤大田苗圃中采集了普瑞杨和107杨成熟叶片;杀青烘干后,带回实验室测定叶片的硫酸根离子含量。

    • 空气中SO2浓度采用国家标准(GBZ/T160.33-2004)进行检测,2015年委托具有检测资质的第三方(河南濮阳环境检测站)测定在河南濮阳火力发电厂空气中的SO2浓度,2018年委托具有检测资质的第三方(河南安凯职业技术检测有限公司)测定空气中的SO2浓度。采用大气采样器(FCC-1500D)采集气样,运用甲醛吸收-副玫瑰苯胺分光光度法测定SO2浓度。

    • 使用阴离子交换色谱仪(Dionex ICS-3000)定量测定叶片的SO42−含量[13]。叶片烘干后,用研钵粉碎,将过100目筛子的叶片粉末50 mg加入离心管中,并在离心管中加入含有100 mg的PVPP的1 mL去离子水。将离心管放入混匀仪中,4℃混匀振荡60 min,然后沸水煮15 min。取出离心管,4℃,15 000 g离心10 min,吸取上清液,再将上清液离心5 min后,取上清液稀释20倍后,通过离子色谱仪(戴安ICS-3000)测定硫酸根离子含量(于中国林科院森林生态学重点实验室和森林保护学重点实验室完成)。

    • 采用Excel进行t-检验,单因素方差分析,Duncan多重比较。以p = 0.05为显著性鉴定标准。所有测定至少重复3次。

    • 空气中SO2浓度的测定在濮阳市热电厂大院内试验林中于2014年7月28日9:00—11:00 am进行,发现普瑞杨林内SO2浓度是林外的55%(p < 0.05)(表2),表明普瑞杨可减少空气中大概45%的SO2。普瑞杨林内空气中SO2浓度也显著的低于相邻的46杨林内空气中SO2浓度,后者是林外空地SO2浓度的65%。

      表 2  普瑞杨和46杨林内以及林外的大气SO2浓度

      Table 2.  The sulfur dioxide concentration in the air inside and outside the Purui and Zhonglin 46 forests

      地点 SiteSO2浓度
      Concentration of sulfur dioxide/
      (mg·m−3
      普瑞杨林内 Purui poplar forest0.044 ± 0.002 5 c
      46杨林内 46 poplar forest0.052 ± 0.002 5 b
      林外空地 Open space outside the forest0.080 ± 0.006 2 a
        注:同列不同小写字母表示差异显著(p < 0.05)。
        Note: Different lowercase letters in the same column indicate significant (p < 0.05) differences.
    • 在河南濮阳、安阳、河北献县进行了4次对比测定,分别于2015和2018年2次在濮阳进行普瑞杨和46杨树林对比试验;2018在河南安阳和河北献县各进行了1次普瑞杨和107杨林对比试验。比较普瑞杨和46杨、普瑞杨和107杨林内空气的SO2浓度,并以相邻的林外空地SO2浓度为对照,计算普瑞杨、107杨和46杨林内SO2浓度与林外空地的比值,所得数据绘成动态曲线(图12)。图1呈现的是于2018年5月中旬在河北献县测定的情况,全天的SO2浓度有较大波动,但2种杨树林中大气SO2浓度都低于相邻空地,分别相当于空地中59%和71%,其中,普瑞杨内更低。

      图  1  普瑞杨和107杨林内和林外不同时间SO2浓度的动态曲线

      Figure 1.  Diurnal dynamic changes of sulfur dioxide concentration in the air inside and outside the Purui and 107 poplar forests at different times

      图  2  普瑞杨林、46杨和107杨林内和林外不同时间SO2浓度动态变化。

      Figure 2.  Diurnal dynamic changes of sulfur dioxide concentration in the air inside and outside the Purui, 46 and 107 poplar forests at different times

      将3地4次测定的结果绘制在一起(图2),显示46杨和107杨林内的SO2浓度是空地的70%左右,而普瑞杨林内是55%左右。普瑞杨净化空气中SO2能力比46杨和107杨大于约15%。回归曲线显示:46杨和107杨林内的SO2浓度全天基本不变或略有上升的趋势;而普瑞杨林内的SO2浓度从早晨到下午一直在下降。

    • 本文测定污染环境(河南濮阳市热电厂内)下的普瑞杨和46杨以及无污染环境(苗圃)下的普瑞杨和107杨的叶片硫酸根含量(表3),表明热电厂内普瑞杨叶片硫酸根的含量是46杨的2.13倍(p < 0.01),是苗圃中普瑞杨的2.49倍(p < 0.01),说明在大气SO2污染环境中普瑞杨更能发挥将有毒SO2气体转化成无毒的硫酸盐的功能。苗圃普瑞杨叶片硫酸根的含量也比107杨高2.07倍(p < 0.01),说明在低SO2环境中普瑞杨吸收转化SO2的能力也比107杨强。

      表 3  普瑞杨与其它杨树品种叶片硫酸根含量的差异

      Table 3.  Difference of sulfate (SO42−) concentration in the leaves of Purui and other poplar varieties

      地点
      Site
      杨树品种
      Varieties
      SO42-浓度
      Concentration of sulfate/(µg·g-1)
      环境SO2浓度
      Concentration of sulfur dioxide in the air / (mg·g−1)
      热电厂 Power plant普瑞杨 Purui poplar 55.14 ± 3.48 A0.220 ± 0.025
      46杨 46 poplar25.86 ± 3.52 B
      苗圃 Nursery普瑞杨 Purui poplar22.14 ± 0.83 A0.017 ± 0.002
      107杨 107 poplar10.69 ± 1.98 B
        注:不同大写字母表示差异显著(p < 0.01)。
        Note: Different capital-letters in the same column indicate significant (p < 0.01) differences.
    • 本文首次从杨树林内、外空气中SO2浓度的差异,比较了普瑞杨等3种杨树品种吸收SO2净化空气的能力,并结合测定叶片中硫酸根离子的浓度,探索这几种杨树品种将吸收空气中的SO2转化为无毒的含硫化合物的能力,藉此阐明抗硫无性系普瑞杨的抗SO2机制。

      关于森林树木对大气污染物吸收净化功能的研究,同时比较森林内外SO2浓度的变化和树木体内硫酸根离子的浓度变化有助于精确判定树木的吸收净化能力。仅通过测定树木叶片中硫含量来判定其吸收SO2的能力,难以确定硫含量的变化是否是通过SO2的吸收,因为也可能来自根系对硫酸盐的吸收。另一方面,仅从森林内、外SO2浓度变化来判断树木净化大气的能力也难以断定SO2是否直接被树木吸收了,而植物体内硫含量的数据可以佐证这一判断。

      植物吸收SO2、净化空气作用还需和它转化脱毒的能力相关连,因为SO2对植物有毒害作用,只有及时将SO2转化成无毒的化合物才能保证在植物体内SO2不累积到毒害浓度,使植物健康正常生长并持续起到吸收SO2、净化空气的作用。植物主要是通过气孔吸收SO2等有毒气体[14-15]。SO2通过气孔进入细胞质中,并迅速水合并分离成亚硫酸盐(SO32−)和亚硫酸氢离子(HSO3−),亚硫酸盐可以在过氧物体中被亚硫酸盐氧化酶(SO)氧化成硫酸盐(SO42−),后者在质体中进一步同化成无毒有机硫,植物以此来降低受SO2毒害的程度[16]。本研究在不同的地点、时间、SO2浓度条件下,对比了不同品种杨树林内、外空气中SO2浓度及其变化规律,充分证明3种杨树都具有吸收SO2、净化空气的能力,但普瑞杨的能力更强。同时本研究通过比较污染环境(热电厂内)和较洁净空气环境(苗圃中)中普瑞杨与其它品种杨树叶片硫酸根含量的差异,均显示普瑞杨叶片硫酸根的含量显著高于其他杨树,说明普瑞杨有更强的吸收、转化SO2的能力。笔者先前研究发现,普瑞杨叶片中的谷胱甘肽含量比107杨高出24%[4]。可见一部分硫酸根发生还原以及同化生成谷胱甘肽[9]。谷胱甘肽的产生不但消耗了吸入植物体内的SO2,而且谷胱甘肽本身具有抗过氧化作用,藉以增强植物抗环境胁迫的能力。这些转化也揭示了普瑞杨的抗SO2机制,即通过及时迅速地将SO2水合之后生成的亚硫酸盐转化为对植物是有益无害的硫酸根离子,从而实现脱毒。

    • 普瑞杨具有很强的吸收空气中SO2能力,它可以减少空气中SO2含量和污染危害,并且能将有毒的SO2转化成无毒且对植物(及其他生物)有益的硫酸根离子,最后转化为植物所需的含硫氨基酸及谷胱甘肽(对生物有益的还原剂)。这些转化脱毒能力可能是普瑞杨抗SO2的重要机理。因此,普瑞杨可作为净化空气、并适宜SO2污染区种植的优良造林树种。

参考文献 (16)

目录

    /

    返回文章
    返回