[1] Openshaw K. A review of Jatropha curcas:an oil plant of unfulfilled promise[J]. Biomass & Bioenergy, 2000, 19(1):1-15.
[2] Augustus G D P S, Jayabalan M, Seiler G J. Evaluation and bioinduction of energy components of Jatropha curcas[J]. Biomass & Bioenergy, 2002, 23(3):161-164.
[3] Nam K H, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2):203-212. doi: 10.1016/S0092-8674(02)00814-0
[4] Boller T, Felix G. A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annual Review of Plant Biology, 2008, 60(2):379-406.
[5] Morillo S A, Tax F E. Functional analysis of receptor-like kinases in monocots and dicots[J]. Current Opinion in Plant Biology, 2006, 9(5):460-469. doi: 10.1016/j.pbi.2006.07.009
[6] She J, Han Z, Kim T W, et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature, 2011, 474(7352):472-476. doi: 10.1038/nature10178
[7] Sun Y, Han Z, Tang J, et al. Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide[J]. Cell Research, 2013, 23(11):1326-1329. doi: 10.1038/cr.2013.131
[8] Peng Y, Chen L, Li S, et al. BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis[J]. Molecular Plant Pathology, 2018, 246(6):1215-1231.
[9] Akanksha S, Priyanka B, Khurana J P, et al. Wheat Brassinosteroid-Insensitive1(TaBRI1) interacts with members of TaSERK gene family and cause early flowering and seed yield enhancement in Arabidopsis[J]. PLoS ONE, 2016, 11(6):e0153273. doi: 10.1371/journal.pone.0153273
[10] Huang G, Han M, Yao W, et al. Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida[J]. Peerj, 2017, 5(5):e3382.
[11] Shuming N, Shuhua H, Shufen W, et al. Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits[J]. Frontiers in Plant Science, 2017, 8:1386. doi: 10.3389/fpls.2017.01386
[12] Liu H F, Kirchoff B K, Wu G J, et al. Microsporogenesis and male gametogenesis in Jatropha curcas L. (Euphorbiaceae)[J]. Journal of the Torrey Botanical Society, 2007, 134(3):335-343. doi: 10.3159/1095-5674(2007)134[335:MAMGIJ]2.0.CO;2
[13] Grove M D, Spencer G F, Rohwedder W K, et al. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728):216-217. doi: 10.1038/281216a0
[14] Xia X J, Huang L F, Zhou Y H, et al. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumissativus[J]. Planta, 2009, 230(6):1185-1196. doi: 10.1007/s00425-009-1016-1
[15] Sharma I, Bhardwaj R, Pati P K. Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety pusa basmati-1[J]. Journal of Plant Growth Regulation, 2015, 34(3):509-518. doi: 10.1007/s00344-015-9486-9
[16] VrietC, Russinova E, Reuzeau C. Boosting crop yields with plant steroids[J]. The Plant Cell, 2012, 24(3):842-857. doi: 10.1105/tpc.111.094912
[17] Sun Y, Han Z, Jiao T, et al. Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide[J]. Cell Research, 2013, 23(11):1326-1329. doi: 10.1038/cr.2013.131
[18] Guo H, Ye H, Li L, et al. A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana[J]. Plant Signaling & Behavior, 2009, 4(8):784-786.
[19] Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant Journal, 2011, 65(4):634-646. doi: 10.1111/j.1365-313X.2010.04449.x
[20] Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2):249-259. doi: 10.1016/j.cell.2004.11.044
[21] Tang W, Yuan M, Wang R, et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1[J]. Nature Cell Biology, 2011, 13(2):124-131. doi: 10.1038/ncb2151
[22] Bouquin T, Meier C, Foster R, et al. Control of specific gene expression by gibberellin and brassinosteroid[J]. Plant Physiol, 2001, 127:450-458. doi: 10.1104/pp.010173
[23] Domagalska M A, Schomburg F M, Amasino R M, et al. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering[J]. Development, 2007, 134(15):2841-2850. doi: 10.1242/dev.02866
[24] Ye Q, Zhu W, Li L, et al. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13):6100-6105. doi: 10.1073/pnas.0912333107
[25] Papadopoulou E, Grumet R. Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production[J]. HortScience, 2005, 40(6), 1763-1767. doi: 10.21273/HORTSCI.40.6.1763
[26] Huang H Y, Jiang W B, Hu Y W, et al. BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1[J]. Molecular Plant, 2012, 6(2):456-469.