[1] 王亚飞, 王 强, 阮 晓, 等. 红豆杉属植物资源的研究现状与开发利用对策[J]. 林业科学, 2012, 48(5):116-125. doi: 10.11707/j.1001-7488.20120518
[2] 赵 灿, 刘任重, 柳展基, 等. 亚洲棉全基因组中NAC类转录因子基因的鉴定与分析[J]. 石河子大学学报:自科版, 2015, 33(4):397-404.
[3] Yang Y F, Zhu K, Wu J, et al. Identification and characterization of a novel NAC-like gene in chrysanthemum (Dendranthema lavandulifolium)[J]. Plant Cell Reports, 2016, 35(8): 1783-98. doi: 10.1007/s00299-016-1996-9
[4] 王立国, 傅明川, 李 浩, 等. 陆地棉NAC转录因子基因GhSNAC1的克隆及其抗旱耐盐分析[J]. 农业生物技术学报, 2019, 27(4):571-580.
[5] Mao C, He J, Liu L, et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal, 2020, 18(2): 429-442. doi: 10.1111/pbi.13209
[6] Xi D, Chen X, Wang Y, et al. Arabidopsis ANAC092 regulates auxin-mediated root development by binding to the ARF8 and PIN4 promoters[J]. Journal of Integrative Plant Biology, 2019, 61(9): 1015-1031. doi: 10.1111/jipb.12735
[7] Chen D, Chai S, McIntyre C L, et al. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance[J]. Plant Cell Reports, 2018, 37(2): 225-237. doi: 10.1007/s00299-017-2224-y
[8] Hao Y J, Wei W, Song Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant Journal, 2011, 68(2): 302-13. doi: 10.1111/j.1365-313X.2011.04687.x
[9] Han X, Feng Z, Xing D, et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis[J]. BMC Plant Biology, 2015, 15: 208. doi: 10.1186/s12870-015-0591-5
[10] Yang X, Kim M Y, Ha J, et al. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science, 2019, 10: 1036. doi: 10.3389/fpls.2019.01036
[11] Hegedus D, Yu M, Baldwin D, et al. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress[J]. Plant Molecular Biology, 2003, 53(3): 383-97. doi: 10.1023/B:PLAN.0000006944.61384.11
[12] Chen C, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009
[13] Huang Y, Niu B, Gao Y, et al. CD-HIT Suite: a web server for clustering and comparing biological sequences[J]. Bioinformatics, 2010, 26(5): 680-2. doi: 10.1093/bioinformatics/btq003
[14] Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37 (Web Server issue): W202-8.
[15] Sun H, Hu M, Li J, et al. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton[J]. BMC Plant Biology, 2018, 18(1): 150. doi: 10.1186/s12870-018-1367-5
[16] Zhuo X, Zheng T, Zhang Z, et al. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume[J]. Genes (Basel), 2018, 9(10): 494. doi: 10.3390/genes9100494
[17] Gong X, Zhao L, Song X, et al. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri)[J]. BMC Plant Biology, 2019, 19(1): 161. doi: 10.1186/s12870-019-1760-8
[18] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research, 2003, 10(6): 239-47. doi: 10.1093/dnares/10.6.239
[19] Fang Y, You J, Xie K, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice[J]. Molecular Genetics and Genomics, 2008, 280(6): 547-63. doi: 10.1007/s00438-008-0386-6
[20] Cheng J, Wang X, Liu X, et al. Chromosome-level genome of Himalayan yew provides insights into the origin and evolution of the paclitaxel biosynthetic pathway[J]. Molecular Plant, 2021, S1674-2052(21): 00160-X.
[21] Xiong X, Gou J, Liao Q, et al. The Taxus genome provides insights into paclitaxel biosynthesis[J]. BioRxiv, 2021: 2021.04. 29.441981.
[22] Ernst H A, Olsen A N, Larsen S, et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. EMBO Reports, 2004, 5(3): 297-303. doi: 10.1038/sj.embor.7400093
[23] 张春华, 上官凌飞, 俞明亮, 等. 桃NAC基因家族生物信息学分析[J]. 江苏农业学报, 2012, 28(2):406-414. doi: 10.3969/j.issn.1000-4440.2012.02.031
[24] 代梦媛, 高 梅, 李文昌. 蓖麻NAC转录因子家族的鉴定及生物信息学分析[J]. 分子植物育种, 2020, 18(6):1808-1817.
[25] 韩雅彭, 程 琳, 杨凌霄. 茶树NAC转录因子家族的鉴定及生物信息学分析[J]. 河南大学学报:自然版, 2017(47):301-309.
[26] 姜秀明, 牛义岭, 许向阳. 番茄NAC基因家族的系统进化及表达分析[J]. 分子植物育种, 2016, 14(8):1948-1964.
[27] 王 震, 米要磊, 孟祥霄, 等. 中药火麻仁基原植物大麻LBD基因家族成员的鉴定与表达分析[J]. 中国中药杂志, 2020, 45(22):175-184.
[28] He X J, Mu R L, Cao W H, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development[J]. Plant Journal, 2005, 44(6): 903-16. doi: 10.1111/j.1365-313X.2005.02575.x
[29] Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development, 2000, 14(23): 3024-3036.