[1] Davidson E A, Trumbore S E, Amundson R. Biogeochemistry: Soil warming and organic carbon content[J]. Nature, 2000, 408(6814): 789-790.
[2] Haynes R J, Beare M H. Aggregation and organic matter storage in meso-thermal, humid soils [C]//Carter M R, Stewart B A. A dvances in soil science: Structure and organic matter storage in agriculture soils. Boca Raton, New York: CRC/Lewis Publishers, 1996: 213-262.
[3] 沈 宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3): 32-38.
[4] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Crop and Pasture Science, 1995, 46(7): 1459-1466.
[5] Whitbread A M, Lefroy R D B, Blair G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J]. Australian Journal of Soil Research, 1998, 36(4): 669-682.
[6] Coleman D C, Reid C P P, Cole C V. Biological strategies of nutrient cycling in soil systems[J]. Advances in Ecological Research, 1983, 13: 1-55.
[7] Wander M M, Traina S J, Stinner B R, et al. Organic and conventional management effects on biologically active soil organic matter pools[J]. Soil Science Society of America Journal, 1994, 58(4): 1130-1139.
[8] Zhang G L. Changes of soil labile organic carbon in different land uses in Sanjiang Plain, Heilongjiang Province[J]. Chinese Geographical Science, 2010, 20(2): 139-143.
[9] Kocyigit R, Demirci S. Long-term changes of aggregate-associated and labile soil organic carbon and nitrogen after conversion from forest to grassland and cropland in northern Turkey [J]. Land Degradation & Development, 2012, 23(5): 475-482.
[10] Zhang T, Li Y F, Chang S X, et al. Converting paddy fields to Lei bamboo (Phyllostachys praecox) stands affected soil nutrient concentrations, labile organic carbon pools, and organic carbon chemical compositions[J]. Plant and soil, 2013, 367(1-2): 249-261.
[11] 王国兵, 赵小龙, 王明慧, 等. 苏北沿海土地利用变化对土壤易氧化碳含量的影响[J]. 应用生态学报, 2013, 24(4): 921-926.
[12] 杜满义, 范少辉, 刘广路, 等. 土地利用方式转变对赣中地区土壤活性有机碳的影响[J]. 应用生态学报, 2013, 24(10): 2897-2904.
[13] Jiang P K, Xu Q F. Abundance and dynamics of soil labile carbon pools under different types of forest vegetation [J]. Pedosphere, 2006, 16(4): 505-511.
[14] Yang Y S, Guo J F, Chen G S, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China[J]. Plant and Soil, 2009, 323(1-2): 153-162.
[15] 刘荣杰, 吴亚丛, 张 英, 等. 中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较[J]. 植物生态学报, 2012, 36(005): 431-437.
[16] Xiong Y M, Xia H P, Li Z, et al. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China[J]. Plant and Soil, 2008, 304(1-2): 179-188.
[17] 吴亚丛, 李正才, 程彩芳, 等. 林下植被抚育对樟树人工林土壤活性有机碳库的影响[J]. 应用生态学报, 2013, 24(12): 3341-3346.
[18] 谢锦升, 杨玉盛, 解明曙, 等. 植被恢复对退化红壤轻组有机质的影响[J]. 土壤学报, 2008, 45(1): 170-175.
[19] 姜发艳, 孙 辉, 林 波, 等. 川西亚高山云杉人工林恢复过程中表层土壤碳动态变化.[J]. 应用生态学报, 2009.20(11): 2581-2587.
[20] LY/T 1237-1999. 森林土壤有机质的测定及碳氮比的计算[S].
[21] Liang B C, MacKenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils, 1997, 26(2): 88-94.
[22] 沈 宏, 曹志洪, 徐志红. 施肥对土壤不同碳形态及碳库管理指数的影响[J]. 土壤学报, 2000, 37(2): 166-173.
[23] Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter in soils from long-term crop rotations[J]. Soil Science Society of America Journal, 1992, 56(6): 1799-1806.
[24] 徐秋芳, 姜培坤. 不同森林植被下土壤水溶性有机碳研究[J]. 水土保持学报, 2005, 18(6): 84-87.
[25] 谢锦升, 杨玉盛, 杨智杰, 等. 退化红壤植被恢复后土壤轻组有机质的季节动态 [J]. 应用生态学报, 2008, 19(3): 557-563.
[26] 吕家珑, 张一平, 王旭东, 等. 农田生态对土壤肥力的保护效应[J]. 生态学报, 2001, 21(4): 613-616.
[27] 宁晓波, 项文化, 王光军, 等. 湖南会同连作杉木林凋落物量20年动态特征[J]. 生态学报, 2009, 29(9): 5122-5129.
[28] 杨智杰, 陈光水, 谢锦升, 等. 杉木、木荷纯林及其混交林凋落物量和碳归还量[J]. 应用生态学报, 2010, 21(9): 2235-2240.
[29] Montagnini F, Ramstad K, Sancho F. Litterfall, litter decomposition and the use of mulch of four indigenous tree species in the Atlantic lowlands of Costa Rica[J]. Agroforestry Systems, 1993, 23(1): 39-61.
[30] Cuevas E, Brown S, Lugo A E. Above-and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest[J]. Plant and Soil, 1991, 135(2): 257-268.
[31] Carvalheiro K D, Nepstad D C. Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia[J]. Plant and Soil, 1996, 182(2): 279-285.
[32] 黄清麟, 郑群瑞, 阮学瑞. 福建青冈萌芽林分结构及生产力的研究[J]. 福建林学院学报, 1995, 15(2): 107-111.
[33] 苏治平. 山杜英人工林生长状况分析[J]. 福建林学院学报, 2000, 20(1): 38-41.
[34] Boyer J N, Groffman P M. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles [J]. Soil Biology and Biochemistry, 1996, 28: 783-790.
[35] Burford J R, Bremner J M. Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter[J]. Soil Biology and Biochemistry, 1975, 7(6): 389-394.
[36] Kuiters A T, Mulder W. Water-soluble organic matter in forest soils[J]. Plant and Soil, 1993, 152(2): 225-235.
[37] 陶 澍,曹 军. 山地土壤表层水溶性有机物淋溶动力学模拟研究[J]. 中国环境科学, 1996, 16(6): 410-414.
[38] Hagedorn F, Kaiser K, Feyen H, et al. Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil[J]. Journal of Environmental Quality, 2000, 29(1): 288-297.
[39] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science, 2000, 165(4): 277-304.
[40] Anderson T H, Domsch K H. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry, 1989, 21(4): 471-479.
[41] Laik R, Kumar K, Das D K, et al. Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations[J]. Applied Soil Ecology, 2009, 42(2): 71-78.
[42] Boone R D. Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization[J]. Soil Biology and Biochemistry, 1994, 26(11): 1459-1468.
[43] Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential[J]. Global Change Biology, 2000, 6(3): 317-327.
[44] Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176.
[45] 李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4): 544-552.
[46] 姜培坤. 不同林分下土壤活性有机碳库研究 [J]. 林业科学, 2005,41(1): 10-13.
[47] 朱志建, 姜培坤, 徐秋芳. 不同森林植被下土壤微生物量碳和易氧化态碳的比较[J]. 林业科学研究, 2006,42(6): 124-128.
[48] Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J]. Soil Biology and Biochemistry, 2000, 32(2): 211-219.