[1] Zobel B, Talbert J. Applied Forest Tree Improvement[M]. New York:Wiley, 1984.
[2] Kang H, Namkoong G. Inbreeding effective population size under some artificial selection schemes. 1. Linear distribution of breeding values[J]. Theoretical and Applied Genetics, 1988, 75(2):333-339. doi: 10.1007/BF00303973
[3] White T L, Adams W T, Neale D B. Forest Genetics[M]. 1st edn. Cambridge (MA):CABI, 2007.
[4] Namkoong G. Inbreeding effects on estimation of genetic additive variance[J]. Forest Science, 1966, 12(1):8-13.
[5] Squillace A E. Average genetic correlations among offspring from open-pollinated forest trees[J]. Silvae Genetica, 1974, 23:149-156.
[6] Askew G, El-Kassaby Y A. Estimation of relationship coefficients among progeny derived from wind-pollinated orchard seeds[J]. Theoretical and Applied Genetics, 1994, 88(2):267-272. doi: 10.1007/BF00225908
[7] Wheeler N, Payne P, Hipkins V, et al. Polymix breeding with paternity analysis in Populus:a test for differential reproductive success (DRS) among pollen donors[J]. Tree Genetics & Genomes, 2006, 2(1):53-60.
[8] Kumar S, Gerber S, Richardson T E, et al. Testing for unequal paternal contributions using nuclear and chloroplast SSR markers in polycross families of radiata pine[J]. Tree Genetics & Genomes, 2007, 3(3):207-214.
[9] Doerksen T K, Herbinger C M. Male reproductive success and pedigree error in red spruce open-pollinated and polycross mating systems[J]. Canadian Journal of Forest Research, 2008, 38(7):1742-1749. doi: 10.1139/X08-025
[10] Moriguchi Y, Ishiduka D, Kaneko T, et al. The contribution of pollen germination rates to uneven paternity among poly crosses of Cryptomeria japonica[J]. Silvae Genetica, 2009, 58(3):139-144.
[11] Munoz P R, Resende M F R, Huber D A, et al. Genomic relationship matrix for correcting pedigree errors in breeding populations:Impact on genetic parameters and genomic selection accuracy[J]. Crop Science, 2014, 54(3):1115-1123. doi: 10.2135/cropsci2012.12.0673
[12] Lambeth C, Lee B C, O'Malley D, et al. Polymix breeding with parental analysis of progeny:An alternative to full-sib breeding and testing[J]. Theoretical and Applied Genetics, 2001, 103(6-7):930-943. doi: 10.1007/s001220100627
[13] Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits[M]. Sunderland, MA:Sinauer Associates, 1998.
[14] Grattapaglia D, Ribeiro V J, Rezende G D S P. Retrospective selection of elite parent trees using paternity testing with microsatellite markers:an alternative short term breeding tactic for Eucalyptus[J]. Theoretical and Applied Genetics, 2004, 109(1):192-199. doi: 10.1007/s00122-004-1617-9
[15] João Gaspar M, De-Lucas A I, Alía R, et al. Use of molecular markers for estimating breeding parameters:a case study in a Pinus pinaster Ait. progeny trial[J]. Tree Genetics & Genomes, 2009, 5(4):609-616.
[16] El-Kassaby Y A, Lstibuůrek M. Breeding without breeding[J]. Genetics Research, 2009, 91(02):111-120. doi: 10.1017/S001667230900007X
[17] Hansen O K, Nielsen U B. Microsatellites used to establish full pedigree in a half-sib trial and correlation between number of male strobili and paternal success[J]. Annals of Forest Science, 2010, 67(7):703. doi: 10.1051/forest/2010028
[18] Parker P G, Snow A A, Schug M D, et al. What molecules can tell us about populations:Choosing and using a molecular marker[J]. Ecology, 1998, 79(2):361-382.
[19] Jones A G, Ardren W R. Methods of parentage analysis in natural populations[J]. Molecular Ecology, 2003, 12(10):2511-2523. doi: 10.1046/j.1365-294X.2003.01928.x
[20] Jones A G, Small C M, Paczolt K A, et al. A practical guide to methods of parentage analysis[J]. Molecular Ecology Resources, 2010, 10(1):6-30. doi: 10.1111/men.2009.10.issue-1
[21] Hansen O K, McKinney L V. Establishment of a quasi-field trial in Abies nordmanniana-test of a new approach to forest tree breeding[J]. Tree Genetics & Genomes, 2010, 6(2):345-355.
[22] El-Kassaby Y A, Cappa E P, Liewlaksaneeyanawin C, et al. Breeding without breeding:Is a complete pedigree necessary for efficient breeding?[J]. PLoS ONE, 2011, 6(10):1-11.
[23] 陈兴彬.日本落叶松自由授粉群体的遗传图谱构建和表型性状的QTL定位研究[D].北京: 中国林业科学研究院, 2016.
[24] 孙晓梅, 张守攻, 李时元, 等.日本落叶松纸浆材优良家系多性状联合选择[J].林业科学, 2005, 41(04):48-54. doi: 10.3321/j.issn:1001-7488.2005.04.009
[25] 马常耕, 孙晓梅.我国落叶松遗传改良现状及发展方向[J].世界林业研究, 2008, 21(03):58-63.
[26] Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 2007, 16(5):1099-1106. doi: 10.1111/j.1365-294X.2007.03089.x
[27] Schimleck L R, Kube P D, Raymond C A. Genetic improvement of kraft pulp yield in Eucalyptus nitens using cellulose content determined by near infrared spectroscopy[J]. Canadian Journal of Forest Research, 2004, 34(11):2363-2370. doi: 10.1139/x04-119
[28] Stackpole D J, Vaillancourt R E, Alves A, et al. Genetic variation in the chemical components of Eucalyptus globulus wood[J]. G3(Bethesda, Md.), 2011, 1(2):151-159. doi: 10.1534/g3.111.000372
[29] Butler D G, Cullis B R, Gilmour A R, et al. ASReml-R reference manual[M]. Department of Primary Industries and Fisheries:Brisbane, Australia, 2009.
[30] R Core Team. R:A language and environment for statistical computing[M]. Vienna, Austria:R Foundation for Statistical Computing, 2014.
[31] Henderson C R. Best linear unbiased estimation and prediction under a selection model[J]. Biometrics, JSTOR, 1975, 31(2):423. doi: 10.2307/2529430
[32] Henderson C R. Prediction of Random Variables[G]//University of Guelph. 1984: 258-289.
[33] White T L, Hodge G R. Predicting Breeding Values with Applications in Forest Tree Improvement[M]. 1st edn. Springer Netherlands, 1989.
[34] Jansson G, Li B. Genetic gains of full-sib families from disconnected diallels in Loblolly pine[J]. Silvae Genetica, 2004, 53(1-6):60-64. doi: 10.1515/sg-2004-0011
[35] Vidal M, Plomion C, Raffin A, et al. Forward selection in a maritime pine polycross progeny trial using pedigree reconstruction[J]. Annals of Forest Science, 2017, 74(1):21. doi: 10.1007/s13595-016-0596-8
[36] El-Kassaby Y A, Reynolds S. Reproductive phenology, parental balance, and supplemental mass pollination in a sitka-spruce seed-orchard[J]. Forest Ecology and Management, 1990, 31(1-2):45-54. doi: 10.1016/0378-1127(90)90110-W
[37] Askew G R. Potential genetic improvement due to supplemental mass pollination management in conifer seed orchards[J]. Forest Ecology and Management, 1992, 47(1-4):135-147. doi: 10.1016/0378-1127(92)90271-A
[38] Griffin A R, Cotterill P P. Genetic variation in growth of outcrossed, selfed and open-pollinated progenies of Eucalyptus regnans and some implications for breeding strategy[J]. Silvae Genetica, 1988, 37(3-4):124-131.
[39] Hodge G, Dvorak W. Genetic parameters and provenenance variation of Pinus caribaea var. hondurensis in 48 international trials[J]. Canadian Journal of Forest Research, 2001, 31(3):496-511. doi: 10.1139/x00-189
[40] Gauzere J, Klein E K, Brendel O, et al. Using partial genotyping to estimate the genetic and maternal determinants of adaptive traits in a progeny trial of Fagus sylvatica[J]. Tree Genetics & Genomes, 2016, 12(6):115.
[41] Milner J M, Pemberton J M, Brotherstone S, et al. Estimating variance components and heritabilities in the wild:A case study using the 'animal model' approach[J]. Journal of Evolutionary Biology, 2000, 13(5):804-813. doi: 10.1046/j.1420-9101.2000.00222.x
[42] Coltman D W, Slate J. Microsatellite measures of inbreeding:a Meta-Analysis[J]. Evolution, 2003, 57(5):971-983. doi: 10.1111/evo.2003.57.issue-5
[43] Powell J E, Visscher P M, Goddard M E. Reconciling the analysis of IBD and IBS in complex trait studies[J]. Nature Reviews Genetics, 2010, 11(11):800-805. doi: 10.1038/nrg2865
[44] Frentiu F D, Clegg S M, Chittock J, et al. Pedigree-free animal models:the relatedness matrix reloaded[J]. Proceedings of the Royal Society B:Biological Sciences, 2008, 275:639-647. doi: 10.1098/rspb.2007.1032
[45] Korecky J, Klápště J, Lstibuůrek M, et al. Comparison of genetic parameters from marker-based relationship, sibship, and combined models in Scots pine multi-site open-pollinated tests[J]. Tree Genetics & Genomes, 2013, 9(5):1227-1235.
[46] Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4):1819-1829.
[47] Yeh F C, Heaman J C. Estimating genetic parameters of height growth in seven-year old coastal Douglas-Fir from disconnected diallels[J]. Forest Science, 1987, 33(4):946-957.
[48] Talbert J. An advanced-generation breeding plan for the NC State University-Industry pine tree improvement cooperative[J]. Silvae Genetica, 1979, 28:72-75.
[49] Carson M J. Control-Pollinated Seed Orchards of Best General Combiners-a New Strategy for Radiata Pine Improvement[G]//Proceedings of the DSIR plant breeding symposium. 1975: 144-149.
[50] Burdon R D, Namkoong G. Short note:multiple populations and sublines[J]. Silvae Genetica, 1983, 32(5-6):221-222.
[51] Wu H X, Hallingbäck H R, Sánchez L. Performance of seven tree breeding strategies under conditions of inbreeding depression[J]. G3(Bethesda, Md.), 2016, 6(3):529-540. doi: 10.1534/g3.115.025767
[52] Kinghorn B P. An algorithm for efficient constrained mate selection[J]. Genetics Selection Evolution, 2011, 43(1):4. doi: 10.1186/1297-9686-43-4