[1] Næsset E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data[J]. Remote Sensing of Environment, 2002, 80(1): 88-99. doi: 10.1016/s0034-4257(01)00290-5
[2] Magnussen S, Boudewyn P. Derivations of stand heights from airborne laser scanner data with canopy-based quantileestimators[J]. Canadian Journal of Forest Research, 2011, 28(7): 1016-1031. doi: 10.1139/cjfr-28-7-1016
[3] Garcia M, Saatchi S, Ferraz A,<italic> et al</italic>. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR[J]. Carbon Balance and Management, 2017, 12(1): 4. doi: 10.1186/s13021-017-0073-1
[4] 穆喜云, 张秋良, 刘清旺, 等. 基于机载LiDAR数据的林分平均高及郁闭度反演[J]. 东北林业大学学报, 2015, 43(9):84-89. doi: 10.13759/j.cnki.dlxb.20150721.018
[5] Popescu S C, Wynne R H, Nelson R F. Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size[J]. Computers and Electronics in Agriculture, 2002, 37(1-3): 71-95. doi: 10.1016/s0168-1699(02)00121-7
[6] Popescu S C. Estimating biomass of individual pine trees using airborne lidar[J]. Biomass and Bioenergy, 2007, 31(9): 646-655. doi: 10.1016/j.biombioe.2007.06.022
[7] Feng L, Chang T, Gui Z,<italic> et al</italic>. Estimation of forest parameter and biomass for individual pine trees using airborne LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(9): 219-224+242. doi: 10.6041/j.issn.1000-1298.2013.09.039
[8] 穆喜云, 张秋良, 刘清旺, 等. 基于机载激光雷达的寒温带典型森林高度制图研究[J]. 北京林业大学学报, 2015, 37(7):58-67.
[9] Urbazaev M, Thiel C, Cremer F,<italic> et al</italic>. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico[J]. Carbon Balance and Management, 2018, 13(1): 5. doi: 10.1186/s13021-018-0093-5
[10] Bouvier M, Durrieu S, Fournier R A,<italic> et al</italic>. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data[J]. Remote Sensing of Environment, 2015, 156: 322-334. doi: 10.1016/j.rse.2014.10.004
[11] Montealegre A L, Lamelas M T, La Riva J D,<italic> et al</italic>. Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest[J]. Forestry, 2016, 89(4): 373-382. doi: 10.1093/forestry/cpw008
[12] 高 婷, 李卫忠, 赵鹏祥, 等. 基于ArboLiDAR的大野口林区森林参数估测[J]. 西北林学院学报, 2017, 32(4):172-177+223. doi: 10.3969/j.issn.1001-7461.2017.04.30
[13] 庞 勇, 赵 峰, 李增元, 等. 机载激光雷达平均树高提取研究[J]. 遥感学报, 2008,(1):152-158.
[14] Kwak D A, Cui G, Lee W K,<italic> et al</italic>. Estimating plot volume using lidar height and intensity distributional parameters[J]. International Journal of Remote Sensing, 2014, 35(13): 4601-4629. doi: 10.1080/01431161.2014.915592
[15] Silva C A, Carine K, Hudak A T,<italic> et al</italic>. Modeling and mapping basal area of <italic>Pinustaeda L.</italic> plantation using airborne LiDAR data[J]. Anais da Academia Brasileira de Ciências, 2017, 89(3): 1895-1905. doi: 10.1590/0001-3765201720160324
[16] 徐 婷, 曹 林, 申 鑫, 等. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4):309-321.
[17] 刘 浩, 张峥男, 曹 林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018, 22(5):872-888. doi: 10.11834/jrs.20187465
[18] Osborne J W, Waters E. Four assumptions of multiple regression that researchers should always test[J]. Practical Assessment, Research & Evaluation, 2002, 8(2). doi: 10.7275/r222-hv23
[19] Dalponte M, Bruzzone L, Gianelle D. Estimation of tree biomass volume in alpine forest areas using multireturn Lidar data and support vector regression[C]// Image and Signal Processing for Remote Sensing XIV. International Society for Optics and Photonics, 2008. doi: 10.1117/12.801669
[20] Gleason C J, Im J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012, 125: 80-91. doi: 10.1016/j.rse.2012.07.006
[21] Li M, Im J, Quackenbush L J,<italic> et al</italic>. Forest biomass and carbon stock quantification using airborne LiDAR data: A case study over huntingtonwildlife forest in the Adirondack Park[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 3143-3156. doi: 10.1109/JSTARS.2014.2304642
[22] 鲁 林, 周小成, 余治忠, 等. 随机森林算法在机载LiDAR数据林分平均树高估算中的应用研究[J]. 地球信息科学学报, 2016, 18(8):1133-1140.
[23] Alberto S C, Carine K, Hudak A T,<italic> et al</italic>. Estimating stand height and tree density in <italic>Pinus taeda</italic> plantations using in-situ data, airborne LiDAR and k-Nearest neighbor imputation[J]. Anais da Academia Brasileira de Ciências, 2018, 90(1): 295-309. doi: 10.1590/0001-3765201820160071
[24] Monnet J M, Chanussot J, Berger, Frédéric. Support vector regression for the estimation of forest stand parameters using airborne laser scanning[J]. IEEE Geoscience & Remote Sensing Letters, 2011, 8(3): 580-584. doi: 10.1109/LGRS.2010.2094179
[25] Tompalski P, White J C, Coops N C,<italic> et al</italic>. Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data[J]. Remote Sensing of Environment, 2019, 227: 110-124. doi: 10.1016/j.rse.2019.04.006
[26] 洪奕丰, 张守攻, 陈 伟, 等. 基于机载激光雷达的落叶松组分生物量反演[J]. 林业科学研究, 2019, 32(5):83-90. doi: 10.13275/j.cnki.lykxyj.2019.05.011
[27] Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B4/1, PART 4): 111-118.
[28] Naesset E, Bjerknes K. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data[J]. Remote Sensing of Environment, 2001, 78(3): 328-340. doi: 10.1016/S0034-4257(01)00228-0
[29] Tesfamichael S G, Ahmed F B, Van Aardt J A N. Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in <italic>Eucalyptus grandis</italic> plantations[J]. International Journal of Remote Sensing, 2010, 31(11): 2925-2940. doi: 10.1080/01431160903144086
[30] 庞 勇, 李增元, 谭炳香, 等. 点云密度对机载激光雷达林分高度反演的影响[J]. 林业科学研究, 2008, 21(Z1):14-19. doi: 10.3321/j.issn:1001-1498.2008.z1.003