[1] Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecological Applications, 2010, 20(1): 5-15. doi: 10.1890/08-0127.1
[2] Ruttenberg K C. The Global Phosphorus Cycle[J]. Treatise on Geochemistry, 2003, 8(2): 585-643.
[3] Vitousek P M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests[J]. Ecology, 1984, 65(1): 285-298. doi: 10.2307/1939481
[4] Townsend A R, Cleveland C C, Houlton B Z, et al. Multi-element regulation of the tropical forest carbon cycle[J]. Frontiers in Ecology and the Environment, 2011, 9(1): 9-17. doi: 10.1890/100047
[5] Gress S E, Nichols T D, Northcraft C C, et al. Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation?[J]. Ecology, 2007, 88(1): 119-130. doi: 10.1890/0012-9658(2007)88[119:NLISED]2.0.CO;2
[6] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4):325-339.
[7] 欧阳园丽, 张参参, 林小凡, 等. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6):746-758. doi: 10.17520/biods.2020368
[8] Rao Q Y, Su H J, Ruan L W, et al. Phosphorus enrichment affects trait network topologies and the growth of submerged macrophytes[J]. Environmental Pollution, 2022, 292: 118331. doi: 10.1016/j.envpol.2021.118331
[9] 贾 婷, 宋武云, 关新贤, 等. 湿地松针叶功能性状及其对磷添加的响应[J]. 南京林业大学学报:自然科学版, 2021, 45(6):65-71.
[10] Duan X J, Wang X H, Jin K M, et al. Genetic dissection of root angle of Brassica napus in response to low phosphorus[J]. Frontiers in Plant Science, 2021, 12: 697872. doi: 10.3389/fpls.2021.697872
[11] 林 强. 磷添加对芒萁功能性状的影响[J]. 中国水土保持科学, 2020, 18(4):130-138.
[12] 陈 竣, 李贻铨, 陈道东, 等. 杉木人工林土壤磷素形态及其有效性研究[J]. 林业科学研究, 1996, 9(2):121-126.
[13] 国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019: 29.
[14] 盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1):1-14.
[15] 闫文德, 田大伦, 项文化, 等. 速生阶段第二代杉木人工林生物地球化学循环动态[J]. 中南林学院学报, 2002, 22(3):20-23.
[16] 田大伦, 沈 燕, 康文星, 等. 连栽第1和第2代杉木人工林养分循环的比较[J]. 生态学报, 2011, 31(17):5025-5032.
[17] 洪慧滨, 林成芳, 彭建勤, 等. 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响[J]. 生态学报, 2017, 37(1):136-146.
[18] Mo Q F, Wang W J, Chen Y Q, et al. Response of foliar functional traits to experimental N and P addition among overstory and understory species in a tropical secondary forest[J]. Global Ecology and Conservation, 2020, 23: e01109. doi: 10.1016/j.gecco.2020.e01109
[19] 李淑英. 混交模式对闽楠和杉木叶片、细根功能性状的影响[D]. 长沙: 中南林业科技大学, 2019.
[20] 王楚楚, 钟全林, 程栋梁, 等. 引种期同质园翅荚木主要叶功能性状与种源地环境关系[J]. 生态学报, 2019, 39(13):4892-4899.
[21] Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a panamanian rainforest[J]. Ecology, 2000, 81(7): 1925-1936. doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
[22] Vendramini F, Díaz S, Gurvich D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytologist, 2002, 154(1): 147-157. doi: 10.1046/j.1469-8137.2002.00357.x
[23] Niinemets Ü. Photosynthesis and resource distribution through plant canopies[J]. Plant, Cell and Environment, 2007, 30(9): 1052-1071. doi: 10.1111/j.1365-3040.2007.01683.x
[24] 祁 建, 马克明, 张育新. 北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J]. 生态学报, 2008, 28(1):122-128. doi: 10.3321/j.issn:1000-0933.2008.01.014
[25] 王瑞丽, 于贵瑞, 何念鹏, 等. 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例[J]. 生态学报, 2016, 36(8):2175-2184.
[26] Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155-162. doi: 10.1046/j.1469-8137.1999.00427.x
[27] 程 雯, 喻阳华, 熊康宁, 等. 喀斯特高原峡谷优势种叶片功能性状分析[J]. 广西植物, 2019, 39(8):1039-1049. doi: 10.11931/guihaia.gxzw201808003
[28] 刘旻霞, 马建祖. 阴阳坡植物功能性状与环境因子的变化特征[J]. 水土保持研究, 2013, 20(1):102-106.
[29] Xiang W H, Wu W, Tong J, et al. Differences in fine root traits between early and late-successional tree species in a Chinese subtropical forest[J]. Forestry, 2013, 86(3): 343-351. doi: 10.1093/forestry/cpt003
[30] Comas L H, Mueller K E, Taylor L L, et al. Evolutionary patterns and biogeochemical significance of angiosperm root traits[J]. International Journal of Plant Sciences, 2012, 173(6): 584-595. doi: 10.1086/665823
[31] 许 立. 亚热带20个树种细根功能性状研究[D]. 长沙: 中南林业科技大学, 2021.
[32] 于姣妲, 李 莹, 殷丹阳, 等. 杉木对低磷胁迫的响应和生理适应机制[J]. 林业科学研究, 2017, 30(4):566-575.
[33] 黄盛怡, 吴统贵, 楚秀丽, 等. 磷添加和接种菌根菌对马尾松不同家系容器苗的生长及磷素利用效应[J]. 林业科学研究, 2021, 34(5):142-151.
[34] Bradshaw A D. Evolutionary significance of phenotypic plasticity in plants[J]. Advances in Genetics, 1965, 13(1): 115-155.
[35] Li W, Wang P, Qi Q G, et al. Phenotypic diversity and variation of Lonicera caerulea populations in the Changbai Mountain alongside the elevation gradient[J]. Polish Journal of Environmental Studies, 2021, 30(1): 705-716.
[36] 尧婷婷, 孟婷婷, 倪 健, 等. 新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探[J]. 生物多样性, 2010, 18(2):201-211.
[37] 秦 娟, 孔海燕, 刘 华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报:自然科学版, 2016, 44(2):68-76.
[38] 何 斌, 李 青, 冯 图, 等. 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系[J]. 南京林业大学学报:自然科学版, 2020, 44(2):181-190.
[39] Jiang X Y, Jia X, Gao S J, et al. Plant nutrient contents rather than physical traits are coordinated between leaves and roots in a desert shrubland[J]. Frontiers in Plant Science, 2021, 12: 734775. doi: 10.3389/fpls.2021.734775
[40] Chang Y N, Xu C B, Yang H, et al. Leaf structural traits vary with plant size in even-aged stands of Sapindus mukorossi[J]. Frontiers in Plant Science, 2021, 12: 692484. doi: 10.3389/fpls.2021.692484
[41] Ning Z Y, Li Y L, Zhao X Y, et al. Comparison of leaf and fine root traits between annuals and perennials, implicating the mechanism of species changes in desertified grasslands[J]. Frontiers in Plant Science, 2022, 12: 778547. doi: 10.3389/fpls.2021.778547
[42] 王钊颖, 程 林, 王满堂, 等. 武夷山落叶林木本植物细根性状研究[J]. 生态学报, 2018, 38(22):8088-8097.