[1] 蒋志敏, 王 威, 储成才. 植物氮高效利用研究进展和展望[J]. 生命科学, 2018, 30(10):34-45.
[2] Liu B H, Wu J Y, Yang S Q, et al. Nitrate regulation of lateral root and root hair development in plants[J]. Journal of Experimental Botany, 2020, 71(15): 4405-4414. doi: 10.1093/jxb/erz536
[3] Krapp A, David L C, Chardin C, et al. Nitrate transport and signaling in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(3): 789-798. doi: 10.1093/jxb/eru001
[4] Wang Y Y, Cheng Y H, Chen K E, et al. Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85-122. doi: 10.1146/annurev-arplant-042817-040056
[5] Tsay Y F, Chiu C C, Tsai C B, et al. Nitrate transporters and peptide transporters[J]. FEBS Letters, 2007, 581(12): 2290-2300. doi: 10.1016/j.febslet.2007.04.047
[6] Lin C M, Koh S, Stacey G, et al. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice[J]. Plant Physiology, 2000, 122(2): 379-388. doi: 10.1104/pp.122.2.379
[7] Quaggiotti S, Ruperti B, Pizzeghello D, et al. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.)[J]. Journal of Experimental Botany, 2004, 55(398): 803-813. doi: 10.1093/jxb/erh085
[8] Guo T C, Xuan H M , Yang Y Y, et al. Transcription analysis of genes encoding the wheat root transporter NRT1 and NRT2 families during nitrogen starvation[J]. Journal of Plant Growth Regulation, 2014, 33(4): 837-848. doi: 10.1007/s00344-014-9435-z
[9] Léran S, Varala K, Boyer J C, et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends Plant Science, 2014, 19(1): 5-9. doi: 10.1016/j.tplants.2013.08.008
[10] Zhao X, Huang J Y, Yu H H, et al. Genomic survey, characterization and expression profile analysis of the peptide transporter family in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2010, 10: 92. doi: 10.1186/1471-2229-10-92
[11] Lin S H, Kuo H F, Canivenc G, et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20(9): 2514-2528. doi: 10.1105/tpc.108.060244
[12] Hsu P K, Tsay Y F. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology, 2013, 163(2): 844-856. doi: 10.1104/pp.113.226563
[13] Wang W, Hu B, Yuan D, et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. The Plant Cell, 2018, 30(3): 638-651. doi: 10.1105/tpc.17.00809
[14] Wen Z Y, Tyerman S D, Dechorgnat J, et al. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride[J]. The Plant Cell, 2017, 29(10): 2581-2596. doi: 10.1105/tpc.16.00724
[15] Migocka M, Warzybok A, Kłobus G. The genomic organization and transcriptional pattern of genes encoding nitrate transporters 1 (NRT1) in cucumber[J]. Plant and Soil, 2012, 364: 245-260.
[16] Bai H, Euring D, Volmer K, et al. The nitrate transporter (NRT) gene family in poplar[J]. PLoS One, 2013, 8(8): e72126. doi: 10.1371/journal.pone.0072126
[17] Wang Q, Liu C H, Dong Q L, et al. Genome-wide identification and analysis of apple NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER Family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions[J]. International Journal of Molecular Science, 2018, 19(9): 2761. doi: 10.3390/ijms19092761
[18] Wang J, Li Y X, Zhu F, et al. Genome-wide analysis of nitrate transporter (NRT/NPF) family in Sugarcane Saccharum spontaneum L.[J]. Tropical Plant Biology, 2019, 12(3): 133-149. doi: 10.1007/s12042-019-09220-8
[19] 江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.
[20] Song X Z, Peng C H, Ciais P, et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a moso bamboo forest[J]. Science Advance, 2020, 6(12): eaaw5790.
[21] Sun H F, Li Q, Lei Z F, et al. Ecological stoichiometry of nitrogen and phosphorus in moso bamboo (Phyllostachys edulis) during the explosive growth period of new emergent shoots[J]. Journal of Plant Research, 2019, 132(1): 107-115. doi: 10.1007/s10265-018-1070-5
[22] 高培军. 氮素施肥对毛竹光合能力与光谱特性的影响[D]. 北京: 北京林业大学, 2013.
[23] Peng Z H, Lu Y, Li L B, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4): 456-461. doi: 10.1038/ng.2569
[24] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
[25] Knight V B, Serrano E E. Expression analysis of RNA sequencing data from human neural and glial cell lines depends on technical replication and normalization methods[J]. BMC Bioinformatics, 2018, 19(14): 412.
[26] Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009
[27] Huang Z, Jin S H, Guo H D, et al. Genome-wide identification and characterization of TIFY family genes in moso bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses[J]. PeerJ, 2016(4): e2620. doi: 10.7717/peerj.2620
[28] Wang W J, Gu L F, Ye S W, et al. Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla)[J]. BMC Genomics, 2017, 18(1): 870. doi: 10.1186/s12864-017-4250-0
[29] Zhang H X, Wang H H, Zhu Q, et al. Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications[J]. BMC Plant Biology, 2018, 18(1): 125. doi: 10.1186/s12870-018-1336-z
[30] Wu S, Lau K H, Cao Q H, et al. Genome sequences of two diploid wild relatives of cultivated sweet potato reveal targets for genetic improvement[J]. Nature Communications, 2018, 9(1): 4580. doi: 10.1038/s41467-018-06983-8
[31] Niño-González M, Novo-Uzal E, Richardson DN, et al. More transporters, more substrates: the Arabidopsis Major Facilitator Superfamily revisited[J]. Molecular Plant, 2019, 12(9): 1182-1202. doi: 10.1016/j.molp.2019.07.003
[32] Chiba Y, Shimizu T, Miyakawa S, et al. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones[J]. Journal of Plant Research, 2015, 128(4): 679-686. doi: 10.1007/s10265-015-0710-2
[33] Xia X D, Fan X R, Wei J, et al. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport[J]. Journal of Experimental Botany, 2015, 66(1): 317-331. doi: 10.1093/jxb/eru425
[34] Wang H D, Wan Y F, Buchner P, et al. Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum aestivum[J]. Journal of Experimental Botany, 2020, 71(15): 4531-4546. doi: 10.1093/jxb/eraa210
[35] Xu X X, Lou Y F, Yang K B, et al. Identification of homeobox genes associated with lignification and their expression patterns in bamboo shoots[J]. Biomolecules, 2019, 9(12): 862. doi: 10.3390/biom9120862
[36] Li Y G, Ouyang J, Wang Y Y, et al. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development[J]. Scientific Reports, 2015, 5: 9635. doi: 10.1038/srep09635
[37] Buchner P, Hawkesford M J. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat[J]. Journal of Experimental Botany, 2014, 65(19): 5697-5710. doi: 10.1093/jxb/eru231
[38] O'Brien J A, Vega A, Bouguyon E, et al. Nitrate transport, sensing, and responses in plants[J]. Molecular Plant, 2016, 9(6): 837-856. doi: 10.1016/j.molp.2016.05.004
[39] Li B, Byrt C, Qiu J E, et al. Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis[J]. Plant Physiology, 2016, 170(2): 1014-1029. doi: 10.1104/pp.15.01163
[40] Li H, Yu M, Du X Q, et al. NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis[J]. The Plant Cell, 2017, 29(8): 2016-2026.
[41] Wu A M, Hao P B, Wei H L, et al. Genome-wide identification and characterization of glycosyltransferase family 47 in cotton[J]. Frontiers in Genetics, 2019, 10: 824. doi: 10.3389/fgene.2019.00824
[42] Wang Y, Yao Q, Zhang Y, et al. The role of gibberellins in regulation of nitrogen uptake and physiological traits in maize responding to nitrogen availability[J]. International Journal of Molecular Science, 2020, 21(5): 1824. doi: 10.3390/ijms21051824