[1] HASSAN S, MATHESIUS U. The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions[J]. J Exp Bot, 2012, 63(9): 3429-3444. doi: 10.1093/jxb/err430
[2] JANCZAREK M, RACHWAL K, MARZEC A, et al. Signal molecules and cell-surface components involved in early stages of the legume–rhizobium interactions[J]. Applied Soil Ecology, 2015, 85: 94-113. doi: 10.1016/j.apsoil.2014.08.010
[3] LIU C W, MURRAY J D. The role of flavonoids in nodulation host-range specificity: an update[J]. Plants, 2016, 5(3): 33. doi: 10.3390/plants5030033
[4] 邓家珍, 叶绍明, 林铭业, 等. 降香黄檀根瘤以及根瘤菌形态和超微结构特征[J]. 南京林业大学学报(自然科学版), 2023, 47(5):259-267.
[5] 刘 杰, 汪恩涛, 陈文新. 豆科植物根瘤内生细菌的发现及其研究进展[J]. 微生物学报, 2011, 51(8):1001-1006.
[6] RHOADES C C, ECKERT G E, COLEMAN D C. Effect of pasture trees on soil nitrogen and organic matter: implications for tropical montane forest restoration[J]. Restoration Ecology, 1998, 6(3): 262-270. doi: 10.1046/j.1526-100X.1998.00639.x
[7] MITCHELL J S, RUESS R W. N2 fixing alder (Alnus viridis spp. fruticosa) effects on soil properties across a secondary successional chronosequence in interior Alaska[J]. Biogeochemistry, 2009, 95(2-3): 215-229. doi: 10.1007/s10533-009-9332-x
[8] 李 静. 陕北地区白刺花根瘤内生菌遗传多样性及其促生特性研究[D]. 延安: 延安大学, 2022.
[9] 邱并生. 根瘤内生细菌[J]. 微生物学通报, 2013, 40(3):544.
[10] 赵龙飞, 徐亚军, 曹冬建, 等. 溶磷性大豆根瘤内生菌的筛选、抗性及系统发育和促生[J]. 生态学报, 2015, 35(13):4425-4435.
[11] 钟宇舟, 余秀梅, 陈 强, 等. 四川盆地大豆根瘤内生细菌的分离鉴定及促生效果[J]. 应用与环境生物学报, 2017, 23(1):46-53.
[12] 张爱梅, 韩雪英, 孙 坤, 等. 高通量测序分析中国沙棘根瘤与根际土壤细菌多样性[J]. 草原与草坪, 2018, 38(2):49-55.
[13] RAJENDRAN G, SING F, DESAI A J, et al. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp.[J]. Bioresource Technology, 2008, 99(11): 4544-4550. doi: 10.1016/j.biortech.2007.06.057
[14] IBÁÑEZ F, ANGELINI J, TAURIAN T, et al. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria[J]. Systematic and Applied Microbiology, 2009, 32(1): 49-55. doi: 10.1016/j.syapm.2008.10.001
[15] LI J H, WANG E T, CHEN W F, et al. Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China[J]. Soil Biology and Biochemistry, 2008, 40(1): 238-246. doi: 10.1016/j.soilbio.2007.08.014
[16] 国家林业局, LY/T 1864-2009, 南洋楹速生丰产用材林栽培技术规程[S].
[17] MELYA RINIARTI, WAHYU HIDAYAT, HENDRA PRASETIA, et al. Using two dosages of biochar from shorea to improve the growth of Paraserianthes falcataria seedlings. [C]IOP Conference Series: Earth and Environmental Science2021, 749: 012049
[18] 刘 英, 曾炳山, 裘珍飞, 等. 苗木规格对南洋楹组培苗移植成活与生长的影响[J]. 中南林业科技大学学报, 2013, 33(3):47-50 + 63.
[19] 刘 英, 曾炳山, 裘珍飞, 等. 基质对南洋楹组培苗移植成活的影响[J]. 中南林业科技大学学报, 2013, 33(11):29-33.
[20] 广东省质量技术监督局. DB44/T 1112-2013, 南洋楹育苗技术规程[S]. 2013-07-15.
[21] 潘超美, 杨 风, 李幼菊. 南洋楹根瘤菌株分离和应用的研究初报[J]. 热带亚热带土壤科学, 1996, 5(4):232-234.
[22] 文 黎, 杨振德, 席英卓, 等. 降香黄檀根瘤菌的分离、鉴定及生物学特性[J]. 北方园艺, 2022(11):95-103.
[23] 中华人民共和国农业部, NY/T 2419-2013_2500, 中华人民共和国农业部[S].
[24] 吴 月, 隋新华, 戴良香, 等. 慢生根瘤菌及其与花生共生机制研究进展[J]. 中国农业科学, 2022, 55(8):1518-1528.
[25] 薛晓昀, 冯瑞华, 关大伟, 等. 大豆根瘤菌与促生菌复合系筛选及机理研究[J]. 大豆科学, 2011, 30(4):613-620.
[26] 李佳欢, 希 娜, 漫 静, 等. 苜蓿根瘤菌接种数量与方式对接种效果的影响[J]. 草地学报, 2022, 30(3):743-749.
[27] 王作明, 蚁伟民, 余作岳, 等. 豆科树种回接根瘤菌的研究[J]. 植物生态学报, 1996, 20(4):363-370.
[28] 朱亚杰, 陆俊锟, 康丽华, 等. 黑木相思根瘤菌的系统发育分析及其结瘤效果研究[J]. 微生物学通报, 2015, 42(11):2198-2206.
[29] SARR A, DIOP B, PELTIER R, et al. Effect of rhizobial inoculation methods and host plant provenances on nodulation and growth of Acacia senegal and Acacia nilotica[J]. New Forest, 2005, 29(1): 75-87. doi: 10.1007/s11056-004-5232-z
[30] VINAY K D, NEERJA R, VIVEK K D, et al. Effect of rhizobial isolates and nitrogen fertilizers on nursery performance, nodulation behavior and nitrogenase activity of Dalbergia sissoo Roxb. Seedlings[J]. Plant Stress, 2022, 4: 100080.
[31] 王 浩, 赵双进, 王绍东, 等. 不同茬口土壤和大豆品种对根瘤菌遗传多样性的影响[J]. 中国生态农业学报, 2014, 22(6):648-654.
[32] 段如雁. 花榈木根瘤菌多样性及优良菌株筛选[D]. 贵阳: 贵州大学, 2019.
[33] WU L J, WANG H Q, WANG E T, et al. Genetic diversity of nodulating and non-nodulating rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc. ) in different ecoregions of China[J]. FEMS Microbiology Ecology, 2011, 76(3): 439-450. doi: 10.1111/j.1574-6941.2011.01064.x
[34] BARCELLOS F G, MENNA P, da SILVA BATISTA J S, et al. Evidence of horizontal transfer of symbiotic genes from a bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil[J]. Applied and Environmental Microbiology, 2007, 73(8): 2635-2643. doi: 10.1128/AEM.01823-06
[35] SETSUKO H, MARCUS T, ERI H, et al. Aquabacterium pictum sp. nov., the first aerobic bacteriochlorophyll a-containing fresh water bacterium in the genus Aquabacterium of the class Betaproteobacteria.[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(1): 596-603. doi: 10.1099/ijsem.0.003798
[36] 郭兆武. 高产杂交稻‘两优培九’的光合特性研究[D]. 长沙: 湖南农业大学, 2008.
[37] 杨 波, 王邵军, 赵 爽, 等. 丛枝菌根真菌共生对石漠化生境白枪杆生长及光合特性的影响[J]. 浙江农林大学学报, 2022, 39(5):1028-1036.