[1] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045): 988-993. doi: 10.1126/science.1201609
[2] De Groot R S, Alkemade R, Braat L, et al. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making[J]. Ecological Complexity, 2010, 7(3): 260-272. doi: 10.1016/j.ecocom.2009.10.006
[3] 陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989.
[4] 国家林业局. 立木生物量模型及碳计量参数落叶松[S]. 北京: 中国标准出版社, 2016.
[5] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1-3): 9-16. doi: 10.1016/j.foreco.2005.10.074
[6] Návar J. Biomass component equations for Latin American species and groups of species[J]. Annals of Forest Science, 2009, 66: 208-208. doi: 10.1051/forest/2009001
[7] Ter-Mikaelian M T, Korzukhin M D. Biomass equations for sixty-five north American tree species[J]. Forest Ecology and Management, 1997, 97(1): 1-24. doi: 10.1016/S0378-1127(97)00019-4
[8] 雷相东, 张会儒, 牟惠生. 东北过伐林区蒙古栎林分相容性生物量模型研究[J]. 第四纪研究, 2010, 30(3):559-565.
[9] 董利虎, 李凤日. 大兴安岭东部主要林分类型乔木层生物量估算模型[J]. 应用生态学报, 2018, 29(9):2825-2834.
[10] 赵嘉诚, 李海奎. 杉木单木和林分水平地下生物量模型的构建[J]. 林业科学, 2018, 54(2):81−89.
[11] Rudgers J A, Hallmark, A, Baker S R, et al. Sensitivity of dryland plant allometry to climate[J]. Functional Ecology, 2019, 33(12): 2290-2303. doi: 10.1111/1365-2435.13463
[12] Fu L Y, Lei X D, Hu Z D, et al. Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China[J]. Annals of Forest Science, 2017, 74(42): 42.
[13] Zeng W S, Duo H R, Lei X D, et al. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China[J]. European Journal of Forest Research, 2017, 136(2): 233-249. doi: 10.1007/s10342-017-1024-9
[14] Usoltsev V A, Shobairi S O R, Tsepordey I S, et al. Modeling the additive structure of stand biomass equations in climatic gradients of Eurasia[J]. Environmental Quality Management, 2018, 28(2): 55-61. doi: 10.1002/tqem.21603
[15] 雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12):116-126. doi: 10.11707/j.1001-7488.20181213
[16] 何 潇, 李海奎, 曹 磊, 等. 退化森林生态系统中林分碳储量的驱动因素—以内蒙古大兴安岭为例[J]. 林业科学研究, 2020, 33(2):69-76.
[17] 胥 辉. 生物量模型方差非齐性研究[J]. 西南林学院学报, 1999, 19(2):73-77.
[18] 郭清文, 冯仲科, 张彦林, 等. 单木生物量模型误差分析与定权方法探讨[J]. 中南林业调查规划, 2006, 25(1):5-9. doi: 10.3969/j.issn.1003-6075.2006.01.002
[19] Huber P J. Robust Regression: Asymptotics, Conjectures, and Monte Carlo[J]. Annals of Statistics., 1973, 1(5): 799-821.
[20] Wang T L, Wang G Y, Innes J L, et al. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 448-458. doi: 10.15302/J-FASE-2017172
[21] 曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137-143.
[22] Baskerville G L. Use of logarithmic regression in the estimation of plant biomass[J]. Canadian Journal of Forest Research, 1972, 2(1): 49-53. doi: 10.1139/x72-009
[23] 茆诗松, 王静龙, 史定华, 等. 统计手册[M]. 北京: 科学出版社, 2003.
[24] 薛春泉, 徐期瑚, 林丽平, 等. 广东主要乡土阔叶树种含年龄和胸径的单木生物量模型[J]. 林业科学, 2019, 55(2):97-108. doi: 10.11707/j.1001-7488.20190210
[25] 洪奕丰, 陈东升, 申佳朋, 等. 长白落叶松人工林单木和林分水平的相容性生物量模型研究[J]. 林业科学研究, 2019, 32(4):33-40.
[26] 徐奇刚, 雷相东, 国 红, 等. 基于多层感知机的长白落叶松人工林林分生物量模型[J]. 北京林业大学学报, 2019, 41(5):97-107.
[27] 黄建辉, 韩兴国, 陈灵芝. 森林生态系统根系生物量研究进展[J]. 生态学报, 1999, 19(2):270-277. doi: 10.3321/j.issn:1000-0933.1999.02.021
[28] Emmingham W H, Waring R H. An index of photosynthesis for comparing forest sites in western Oregon[J]. Canadian Journal of Forest Research, 1977, 7: 165-174. doi: 10.1139/x77-023