[1] 张文娟, 廖洪凯, 龙 健, 等. 种植花椒对喀斯特石漠化地区土壤有机碳矿化及活性有机碳的影响[J]. 环境科学, 2015, 36(3):1053-1059.
[2] 闫丽娟, 李 广, 吴江琪, 等. 黄土高原4种典型植被对土壤活性有机碳及土壤碳库的影响[J]. 生态学报, 2019, 39(15):5546-5554.
[3] 余 健, 房 莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17):4829-4838.
[4] Yude P, Richard A B, Fang J Y, et al. A Large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045): 998-993.
[5] Wang Z, Liu G B, Xu M X, et al. Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China[J]. Catena, 2012, 99: 26-33. doi: 10.1016/j.catena.2012.07.003
[6] 李林海, 郜二虎, 梦 梦, 等. 黄土高原小流域不同地形下土壤有机碳分布特征[J]. 生态学报, 2013, 33(1):179-187.
[7] 乔赵崇, 王炯琪, 赵海超, 等. 种植模式对冀西北坝上土壤活性有机质和碳库管理指数的影响[J]. 生态环境学报, 2020, 29(6):1139-1146.
[8] 张 国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用[J]. 应用生态学报, 2011, 22(7):1921-1930.
[9] 何霄嘉, 王 磊, 柯 兵, 等. 中国喀斯特生态保护与修复研究进展[J]. 生态学报, 2019, 39(18):6577-6585.
[10] Jiang Z Y, Lian X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132: 1-12. doi: 10.1016/j.earscirev.2014.01.005
[11] Parise M, Waele J, Gutierrez F. Current perspectives on the environmental impacts and hazards in karst[J]. Environmental Geology, 2008, 58(2): 235-237.
[12] 白义鑫, 盛茂银, 胡琪娟, 等. 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响[J]. 应用生态学报, 2020, 31(5):1607-1616.
[13] 王克林, 岳跃民, 马祖陆, 等. 喀斯特峰丛洼地石漠化治理与生态服务提升技术研究[J]. 生态学报, 2016, 36(22):7098-7102.
[14] 王克林, 岳跃民, 陈洪松, 等. 喀斯特石漠化综合治理及其区域恢复效应[J]. 生态学报, 2019, 39(20):7432-7440.
[15] 唐夫凯, 崔 明, 周金星, 等. 岩溶峡谷区不同退耕还林地土壤有机碳库差异分析[J]. 中国水土保持科学, 2014, 12(4):1-7. doi: 10.3969/j.issn.1672-3007.2014.04.001
[16] 哈文秀, 周金星, 庞丹波, 等. 岩溶区不同恢复方式下土壤有机碳组分及酶活性研究[J]. 北京林业大学学报, 2019, 41(2):1-11.
[17] 刘红梅, 张海芳, 赵建宁, 等. 氮添加对贝加尔针茅草原土壤活性有机碳和碳库管理指数的影响[J]. 草业学报, 2020, 29(8):18-26. doi: 10.11686/cyxb2019477
[18] 张雅柔, 安 慧, 刘秉儒, 等. 短期氮磷添加对荒漠草原土壤活性有机碳的影响[J]. 草业学报, 2019, 28(10):12-24. doi: 10.11686/cyxb2019234
[19] 滕秋梅, 沈育伊, 徐广平, 等. 桂北喀斯特山区不同植被类型土壤碳库管理指数的变化特征[J]. 生态学杂志, 2020, 39(2):422-433.
[20] 李忠佩, 焦 坤, 吴大付. 不同提取条件下红壤水稻土溶解有机碳的含量变化[J]. 土壤, 2005, 37(5):512-516. doi: 10.3321/j.issn:0253-9829.2005.05.008
[21] 魏孝荣,邵明安,高建伦. 黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J]. 环境科学, 2008,29(10):2879-2884.
[22] Tate K R, Ross D J, Feltham C W. A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures[J]. Soil Biology and Biochemistry, 1988, 20(3): 329-335. doi: 10.1016/0038-0717(88)90013-2
[23] 肖 烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23):7625-7633.
[24] 杨丽霞, 潘剑君. 土壤活性有机碳库测定方法研究进展[J]. 土壤通报, 2004, 35(4):502-506. doi: 10.3321/j.issn:0564-3945.2004.04.023
[25] 吴江琪, 马维伟, 李 广, 等. 尕海湿地沼泽化草甸中不同积水区土壤活性有机碳含量[J]. 湿地科学, 2017, 15(1):137-143.
[26] Georg G, Klaus K. Dissolved organic matter in soil: challenging the paradigm of sorptive preservation[J]. Geoderma, 2003, 113(3-4): 293-310. doi: 10.1016/S0016-7061(02)00366-X
[27] Nagamitsu M, Akira W, Makoto K. Chemical characteristics and potential source of fulvic acids leached from the plow layer of paddy soil[J]. Geoderma, 2004, 120(3-4): 309-323. doi: 10.1016/j.geoderma.2004.02.007
[28] Wei S C, Zhang X P, Neil B, et al. Impact of soil water erosion processes on catchment export of soil aggregates and associated SOC[J]. Geoderma, 2017, 294: 63-69. doi: 10.1016/j.geoderma.2017.01.021
[29] Wolka K, Biazin B, Martinsen V, et al. Soil and water conservation management on hill slopes in southwest Ethiopia. I. Effects of soil bunds on surface runoff, erosion and loss of nutrients[J]. Science of The Total Environment, 2020, 757(5): 142877.
[30] Pabst H, Gerschlauer F, Kiese R, et al. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania[J]. Land Degradation & Development, 2016, 27(3): 592-602.
[31] Chen D, Wei W, Stefani D, et al. Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China[J]. Science of the Total Environment, 2020, 721: 137751. doi: 10.1016/j.scitotenv.2020.137751
[32] Zhou X M, Ruan H H, Fu Y, et al. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure[J]. Soil Biology and Biochemistry, 2005, 37(10): 1923-1928. doi: 10.1016/j.soilbio.2005.02.028
[33] Haynes R J. Labile organic matter fractions as central components of the quality of agricultural soils: an overview[J]. Advances in Agronomy, 2005, 85: 221-268. doi: 10.1016/S0065-2113(04)85005-3
[34] Xu M G, Lou Y L, Sun X L, et al. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J]. Biology and Fertility of Soils, 2011, 47(7): 745-752. doi: 10.1007/s00374-011-0579-8
[35] 徐广平, 李艳琼, 沈育伊, 等. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 2019, 40(3):1491-1503.
[36] Dinesh K B, Kiranvir B, Amardeep S T, et al. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India[J]. Geoderma, 2015, 237: 149-158.
[37] 许梦璐, 吴 炜, 颜铮明, 等. 滨海滩涂不同土地利用类型土壤活性有机碳含量与垂直分布[J]. 南京林业大学学报:自然科学版, 2020, 44(4):167-175.
[38] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems.[J]. Australian journal of agricultural research, 1995, 46(7):1459-1466. doi: 10.1071/AR9951459
[39] 戴全厚, 刘国彬, 薛 萐, 等. 侵蚀环境坡耕地改造对土壤活性有机碳与碳库管理指数的影响[J]. 水土保持通报, 2008, 28(4):17-21.
[40] 蒲玉琳, 叶 春, 张世熔, 等. 若尔盖沙化草地不同生态恢复模式土壤活性有机碳及碳库管理指数变化[J]. 生态学报, 2017, 37(2):367-377.
[41] 蔡晓布, 于宝政, 彭岳林, 等. 高寒草原土壤有机碳及土壤碳库管理指数的变化[J]. 生态学报, 2013, 33(24):7748-7755.
[42] 王仁杰, 蒋 燚, 王 勇, 等. 南亚热带不同红锥混交林土壤碳库稳定性与碳库管理指数变化[J]. 林业科学研究, 2021, 34(2):24-31.