[1] Chinnusamy V, Schumaker K, Zhu J. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. Journal of Experimental Botany, 2004, 55(395): 225-236.
[2] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016, 22(6):52-60. doi: 10.3969/j.issn.1006-8082.2016.06.012
[3] Pandey S, Assmann S. M. The Arabidopsis putative Gprotein-coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates abscisic acid signaling[J]. The Plant Cell, 2004, 16(6): 1616-1632. doi: 10.1105/tpc.020321
[4] Roos W, Dordschbal B, Steighard J, et al. A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica[J]. BBA- Molecular Cell Research, 1999, 1448(3): 390-402.
[5] Gao K, Liu Y L, Li B, et al. Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance[J]. Plant & Cell Physiology, 2014, 55(11): 1873-1883.
[6] Wan S, Tian L, Tian R, et al. Involvement of phospholipase D in the low temperature acclimation-induced thermotolerance in grape berry[J]. Plant Physiology & Biochemistry, 2009, 47(6): 504-510.
[7] Hong Y, Zhao J, Guo L, et al. Plant phospholipases D and C and their diverse functions in stress responses[J]. Progress in Lipid Research, 2016, 6: 55-74.
[8] 王雅静, 张欣莹, 黄桂荣, 等. 植物磷脂酸的特性及其在ABA诱导气孔运动中的作用[J]. 植物学报, 2019, 54(2):245-254. doi: 10.11983/CBB18115
[9] Welti R, Li W, Li M, et al. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis[J]. Journal of Biological Chemistry, 2002, 277(35): 31994-32002. doi: 10.1074/jbc.M205375200
[10] Hong Y, Zhang W, Wang X. Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity[J]. Plant Cell & Environment, 2010, 33(4): 627-635.
[11] Tank K, Dong C, Liu J. Genome-wide analysis and expression profiling of the phospholipase D gene family in Gossypium arboreum[J]. Science China-Life Sciences, 2016, 59(2): 130-141. doi: 10.1007/s11427-015-4916-2
[12] Qin C, Wang X. The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-delective PLD zeta 1 with distinct regulatory domains[J]. Plant Physiology, 2002, 128(3): 1057-1068. doi: 10.1104/pp.010928
[13] Li G, Lin F, Xue H-W. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDβ1 in seed germination[J]. CELL RESEARCH., 2007, 17(10): 881-894. doi: 10.1038/cr.2007.77
[14] 张艺思, 刘高峰, 刘路平,等. 白菜PLD基因家族全基因组鉴定及对高温胁迫的响应[J]. 西北植物学报, 2019, 39(8):1361-1370.
[15] Zhao J, Zhou D, Zhang Q, et al. Genomic analysis of phospholipase D family and characterization of GmPLDαs in soybean (Glycine max)[J]. Journal of Plant Research, 2012, 125(4): 569-578. doi: 10.1007/s10265-011-0468-0
[16] Marek E, Martin P, Fatima C, et al. Molecular diversity of phospholipase D in angiosperms[J]. BMC genomics, 2002, 3:2.DOI: 10.1186/1471-2164-3-2.
[17] Wang X, XU L, Zheng L. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L [J]. Journalof Biological Chemistry, 1994, 269(32): 20312-20317.
[18] Ueki J, Morioka S, Komari T, et al. Purification and characterization of phospholipase D (PLD) from rice (Oryza sativa L.) and cloning of cDNA for PLD from rice and maize (Zea mays L.)[J]. Plant and Cell Physiology, 1995, 36(5): 903-914. doi: 10.1093/oxfordjournals.pcp.a078837
[19] Pappan K, Qin W, Dyer J H, et al. Molecular cloning and functional analysis of polyphosphoinositide-dependent phospholipase D, PLDbeta, from Arabidopsis[J]. Journal of Biological Chemistry, 1997, 272(11): 7055-7061. doi: 10.1074/jbc.272.11.7055
[20] Lein W, Saalbach G. Cloning and direct G-protein regulation of phospholipase D from tobacco[J]. BBA- Molecular and Cell Biology of Lipids, 2001, 1530(2-3): 172-183. doi: 10.1016/S1388-1981(00)00182-7
[21] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796-815. doi: 10.1038/35048692
[22] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J]. Science, 2002, 296(5565): 79-92. doi: 10.1126/science.1068037
[23] Zhang L, Cai X, Wu J, et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies[J]. Horticulture research, 2018,5: 50. DOI: 10.1038/s41438-018-0071-9.
[24] Li F, Fan G, Wang K, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics, 2014, 46(6): 567-572. doi: 10.1038/ng.2987
[25] Ma J, Wan D, Duan B, et al. Genome sequence and genetic transformation of a widely distributed and cultivated poplar[J]. Plant biotechnology journal, 2019, 17(2): 451-460. doi: 10.1111/pbi.12989
[26] Laucou V, Launay A, Bacilieri R, et al. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs[J]. PLoS One, 2018, 13(2): e0192540. doi: 10.1371/journal.pone.0192540
[27] Schumutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 465(7294): 120. doi: 10.1038/nature08957
[28] Liu Q, Zhang C, Yang Y, et al. Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape[J]. BMC Plant Biology, 2010, 10: 117. DOI: 10.1186/1471-2229-10-117.
[29] Sang Y, Zheng S, Li W, et al. Regulation of plant water loss by manipulating the expression of phospholipase D alpha[J]. Plant Journal, 2001, 28(2): 135-144. doi: 10.1046/j.1365-313X.2001.01138.x
[30] Wang C, Zien C A, Afitlhile M, et al. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis[J]. Plant cell, 2000, 12(11): 2237-2246.
[31] Zhang W, Wang C, Qin C, et al. The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis[J]. Plant cell, 2003, 15(10): 2285-2295. doi: 10.1105/tpc.013961
[32] Pinosa F, Buhot N, Keaaihaal M, et al. Arabidopsis phospholipase dδ is involved in basal defense and nonhost resistance to powdery mildew fungi[J]. Plant physiology, 2013, 163(2): 896-906. doi: 10.1104/pp.113.223503
[33] Premkumar A, Lindberg S, Lager I, et al. Arabidopsis PLDs with C2-domain function distinctively in hypoxia[J]. Physiologia Plantarum, 2019, 167(1): 90-110. doi: 10.1111/ppl.12874
[34] Zhang T, Song Y, Liu Y, et al. Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa[J]. Chinese Science Bulletin, 2008, 53(23): 3656-3665. doi: 10.1007/s11434-008-0476-1
[35] Ji T, Li S, Li L, et al. Cucumber Phospholipase D alpha gene overexpression in tobacco enhanced drought stress tolerance by regulating stomatal closure and lipid peroxidation[J]. BMC plant biology, 2018,18: 355. DOI: 10.1186/s12870-018-1592-y.
[36] Wang J, Ding B, Guo Y, et al. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana[J]. Planta, 2014, 240(1): 103-115. doi: 10.1007/s00425-014-2066-6
[37] Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & amp; Gray)[J]. Science, 2006, 313(5793): 1596-1604. doi: 10.1126/science.1128691
[38] Finn R D, Penelope C, Eberhardt R Y, et al. The Pfam protein families database: towards a more sustainable future[J]. Nucleic Acids Research, 2015, 44(D1): D279-D285.
[39] ron M B, Lu S, Andreson J B, et al. CDD: a conserved domaindatabase for the functional annotation of proteins[J]. Nucleic Acids Research, 2011, 39(1): D225-D229. doi: 10.1093/nar/gkq769
[40] unta M, Coggill P, Eberhardt R Y, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2012, 40(D1): D290-D301. doi: 10.1093/nar/gkr1065
[41] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009
[42] Widershain G Y. The proteomics protocols handbook[J]. Biochemistry, 2006, 71(6): 861-861.
[43] Chou K, Shen H. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms[J]. Nature protocols, 2008, 3(2): 153-162. doi: 10.1038/nprot.2007.494
[44] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096
[45] Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197
[46] Wang L, Hu W, Sun J, et al. Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9[J]. Plant Science, 2015, 237: 33-45. doi: 10.1016/j.plantsci.2015.05.008
[47] Blang G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J]. Plant Cell, 2004, 16(7): 1667-1678. doi: 10.1105/tpc.021345
[48] Hurst L D. The Ka/Ks ratio: diagnosing the form of sequence evolution[J]. Trends in genetics, 2002, 18(9): 486-487. doi: 10.1016/S0168-9525(02)02722-1
[49] Bailey T L, Nadya W, Chris M, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research, 2006, 34(S1): W369-W373.
[50] Zhang Y, Liu C, Cheng H, et al. DNA methylation and its effects on gene expression during primary to secondary growth in poplar stems[J]. BMC Genomics, 2020, 21:498. DOI: 10.1186/s12864-020-06902-6.
[51] Luz Irina A. Calderón Villalobos, Sarah Lee, Cesar De Oliveira, et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin[J]. Nature Chemical Biology, 2012, 8(5): 477-485. doi: 10.1038/nchembio.926
[52] Yasushi Shimizu Mitao, Tatsuo Kakimoto. Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB[J]. Plant and Cell Physiology, 2014, 55(8): 1450-1459. doi: 10.1093/pcp/pcu077
[53] Ghulam Muhammad Ali, Setsuko Komatsu. Proteomic analysis of rice leaf sheath during drought stress[J]. Journal of proteome research, 2006, 5(2): 396-403. doi: 10.1021/pr050291g