[1] 宋 彬, 胡安鸿, 田永芝, 等. 沙棘PEPCK基因的克隆及表达研究[J]. 西北植物学报, 2017, 37(10):1934-1940. doi: 10.7606/j.issn.1000-4025.2017.10.1934
[2] Fatima T, Kesari V, Watt I, et al. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.)[J]. Phytochemistry, 2015, 118(9): 181-191.
[3] Fang R, Veitch N C, Kite G C, et al. Enhanced profiling of flavonol glycosides in the fruits of sea buckthorn (Hippophae rhamnoides)[J]. J Agric Food Chem, 2013, 61(16): 3868-3875. doi: 10.1021/jf304604v
[4] Yonekura K, Saito K. Function, structure, and evolution of flavonoid glycosyltransferases in plants[J]. Recent Advances in Polyphenol Research, 2014, 4: 61-82.
[5] Yogendra K M S, Tirpude R J, Maheshwari D T, et al. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves in vitro[J]. Food Chem, 2013, 141(4): 3443-3450. doi: 10.1016/j.foodchem.2013.06.057
[6] Rosch D, Krumbein A, Mugge C, et al. Structural investigations of flavonol glycosides from sea buckthorn (Hippophae rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS(n)[J]. J Agric Food Chem, 2004, 52(13): 4039-4046. doi: 10.1021/jf0306791
[7] Teleszko M, Wojdylo A, Rudzinska M, et al. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophae rhamnoides L.) Berries[J]. J Agric Food Chem, 2015, 63(16): 4120-4129. doi: 10.1021/acs.jafc.5b00564
[8] Vogt T, and Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family[J]. Trends Plant Sci, 2000, 5(9): 380-386. doi: 10.1016/S1360-1385(00)01720-9
[9] Bowles D, Lim E K, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules[J]. Annu Rev Plant Biol, 2006, 57: 567-597. doi: 10.1146/annurev.arplant.57.032905.105429
[10] Gachon C M, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis[J]. Trends Plant Sci, 2005, 10(11): 542-549. doi: 10.1016/j.tplants.2005.09.007
[11] Li Y, Baldauf S, Lim E K, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[J]. J Biol Chem, 2001, 276(6): 4338-4343. doi: 10.1074/jbc.M007447200
[12] Li Y, Li P, Wang Y, et al. Genomewide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays)[J]. Planta, 2014, 239(6): 1265-1279. doi: 10.1007/s00425-014-2050-1
[13] Cui L, Yao S, Dai X, et al. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis)[J]. J Exp Bot, 2016, 67(8): 2285-2297. doi: 10.1093/jxb/erw053
[14] Wilson A E, Tian L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism[J]. Plant J, 2019, 100(6): 1273-1288. doi: 10.1111/tpj.14514
[15] Caputi L, Malnoy M, Goremykin V, et al. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land[J]. Plant J, 2012, 69(6): 1030-1042. doi: 10.1111/j.1365-313X.2011.04853.x
[16] Lim E K, Ashford D A, Hou B, et al. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides[J]. Biotechnol Bioeng, 2004, 87(5): 623-631. doi: 10.1002/bit.20154
[17] Trapero A, Ahrazem O, Rubio-Moraga A, et al. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus[J]. Plant Physiol, 2012, 159(4): 1335-1354. doi: 10.1104/pp.112.198069
[18] Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
[19] Chen C, Chen H, Zhang Y, et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Mol Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009
[20] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[21] Huang F C, Giri A, Daniilidis M, et al. Structural and Functional Analysis of UGT92G6 Suggests an Evolutionary Link Between Mono- and Disaccharide Glycoside-Forming Transferases[J]. Plant Cell Physiol, 2018, 59(4): 857-870.
[22] Zhu Y X, Yang L, Liu N, et al. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber[J]. BMC Plant Biol, 2019, 19(1): 345. doi: 10.1186/s12870-019-1953-1
[23] Wu B, Gao L, Gao J, et al. Genome-Wide Identification, Expression Patterns, and Functional Analysis of UDP Glycosyltransferase Family in Peach (Prunus persica L. Batsch)[J]. Front Plant Sci, 2017, 8: 389.
[24] Ren Z, Ji X, Jiao Z, et al. Functional analysis of a novel C-glycosyltransferase in the orchid Dendrobium catenatum[J]. Hortic Res, 2020, 7(1): 111. doi: 10.1038/s41438-020-0330-4
[25] Cheng J, Wei G, Zhou H, et al. Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach[J]. Plant Physiol, 2014, 166(2): 1044-1058. doi: 10.1104/pp.114.246876
[26] Montefiori M, Espley R V, Stevenson D, et al. Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis)[J]. Plant J, 2011, 65(1): 106-118. doi: 10.1111/j.1365-313X.2010.04409.x
[27] Morita Y, Hoshino A, Kikuchi Y, et al. Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose: anthocyanidin 3-O-glucoside-2"-O-glucosyltransferase, due to 4-bp insertions in the gene[J]. Plant J, 2005, 42(3): 353-363. doi: 10.1111/j.1365-313X.2005.02383.x
[28] Witte S, Moco S, Vervoort J, et al. Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L[J]. Planta, 2009, 229(5): 1135-1146. doi: 10.1007/s00425-009-0902-x
[29] Wilson A E, Wu S, Tian L. PgUGT95B2 preferentially metabolizes flavones/flavonols and has evolved independently from flavone/flavonol UGTs identified in Arabidopsis thaliana[J]. Phytochemistry, 2019, 157: 184-193. doi: 10.1016/j.phytochem.2018.10.025
[30] Huang J, Pang C, Fan S, et al. Genome-wide analysis of the family 1 glycosyltransferases in cotton[J]. Mol Genet Genomics, 2015, 290(5): 1805-1818. doi: 10.1007/s00438-015-1040-8